Skip to main content

Laser Photolysis System and PCO Prevention

  • Chapter
  • First Online:
Lens Epithelium and Posterior Capsular Opacification

Abstract

Posterior capsule opacification (PCO) is the most common complication following modern cataract surgery. PCO is caused by proliferation of lens epithelial cells (LECs) that remain in the capsular bag following cataract removal. Various methods for preventing PCO by LEC removal have been developed including pharmacological treatments and mechanical methods for LEC removal. A laser photolysis system has been developed for the removal of LECs from the lens capsular bag. A modified Nd:YAG handpiece has been evaluated in human cadaver eyes to document removal of LECs. In addition, extracellular matrix glycoproteins such as laminin and fibronectin, which may play a role in the development of PCO, were shown to be removed from the lens capsular bag by the photolysis system. Preliminary clinical studies have found that the laser was successful in removing the LECs from the anterior portion of the capsular bag with subsequent clear anterior and posterior capsules in the area of treatment for 2 years. In conclusion, the Nd:YAG laser photolysis system shows promise for prevention of PCO by removal of LECs as well as removal of adhesion glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaumberg DA, Dana MR, Christen WG et al (1998) A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 105:1213–1221

    Article  CAS  PubMed  Google Scholar 

  2. Metge P, Cohen H, Graft F (1989) lntercapsular intraocular lens implantation in children: 35 cases. Eur J Implant Refract Surg 1:169–173

    Article  Google Scholar 

  3. Bertelmann E, Kojetinsky C (2001) Posterior capsule opacification and anterior capsule opacification. Curr Opin Ophthalmol 12:35–40

    Article  CAS  PubMed  Google Scholar 

  4. Stark WJ, Worthen D, Holladay JT et al (1985) Neodymium:YAG lasers; an FDA report. Ophthalmology 92:209–212

    Article  CAS  PubMed  Google Scholar 

  5. Apple DJ, Solomon KD, Tetz MR et al (1992) Posterior capsular opacification. Surv Ophthalmol 37:73–116

    Article  CAS  PubMed  Google Scholar 

  6. Sunderraj P, Villada JR, Joyce PW et al (1992) Glare testing in pseudophakes with posterior capsule opacification. Eye 6:411–413

    Article  PubMed  Google Scholar 

  7. Claesson M, KlarCn L, Bechman C et al (1994) Glare and contrast sensitivity before and after Nd:YAG laser capsulotomy. Acta Ophthalmol 72:27–32

    Article  CAS  Google Scholar 

  8. Zaugg B, Werner L, Neuhann T et al (2010) Clinicopathologic correlation of capsulorhexis phimosis with anterior flexing of single-piece hydrophilic acrylic intraocular lens haptics. J Cataract Refract Surg 36(9):1605–1609

    Article  PubMed  Google Scholar 

  9. Kumar A, Freeman M, Kumar V et al (2008) In the bag IOL dislocation following uncomplicated phacoemulsification. Cont Lens Anterior Eye 31(2):103–106

    Article  PubMed  Google Scholar 

  10. Cavallini GM, Masini C, Campi L et al (2008) Capsulorhexis phimosis after bimanual microphacoemulsification and in-the-bag implantation of the Akreos MI60 intraocular lens. J Cataract Refract Surg 34:1598–1600

    Article  PubMed  Google Scholar 

  11. Qatarneh D, Hau S, Tuft S (2010) Hyperopic shift from posterior migration of hydrophilic acrylic intraocular lens optic. J Cataract Refract Surg 36:161–163

    Article  PubMed  Google Scholar 

  12. Michael K, O’Colmain U, Vallance JH et al (2010) Capsule contraction syndrome with haptic deformation and flexion. J Cataract Refract Surg 36:686–689

    Article  PubMed  Google Scholar 

  13. Fine IH (1992) Cortical cleaving hydrodissection. J Cataract Refract Surg 18:508–512

    Article  CAS  PubMed  Google Scholar 

  14. Vasavada AR, Dholakia SA, Raj SM et al (2006) Effect of cortical cleaving hydrodissection on posterior capsule opacification in age-related nuclear cataract. J Cataract Refract Surg 32:1196–1200

    Article  PubMed  Google Scholar 

  15. Peng Q, Visessook N, Apple DJ et al (2000) Surgical prevention of posterior capsule opacification: 3. The intraocular lens barrier effect as a second line of defense. J Cataract Refract Surg 26:198–213

    Article  CAS  PubMed  Google Scholar 

  16. Menapace R, Di Nardo S (2006) Aspiration curette for anterior capsule polishing: laboratory and clinical evaluation. J Cataract Refract Surg 32:1997–2003

    Article  PubMed  Google Scholar 

  17. Hanson RJ, Rubinstein A, Sarangapani S et al (2006) Effect of lens epithelial cell aspiration on postoperative capsulorhexis contraction with the use of the AcrySof intraocular lens; randomized clinical trial. J Cataract Refract Surg 32:1621–1626

    Article  PubMed  Google Scholar 

  18. Sacu S, Menapace R, Wirtitsch M et al (2004) Effect of anterior capsule polishing on fibrotic capsule opacification: three-year results. J Cataract Refract Surg 30:2322–2327

    PubMed  Google Scholar 

  19. Menapace R, Wirtitsch M, Findl O et al (2005) Effect of anterior capsule polishing on posterior capsule opacification and neodymium:YAG capsulotomy rates: three-year randomized trial. J Cataract Refract Surg 31:2067–2075

    Article  PubMed  Google Scholar 

  20. Liu X, Cheng B, Zheng D et al (2010) Role of anterior capsule polishing in residual lens epithelial cell proliferation. J Cataract Refract Surg 36(2):208–214

    Article  PubMed  Google Scholar 

  21. Peng Q, Apple DJ, Visessook N et al (2000) Surgical prevention of posterior capsule opacification. Part 2: enhancement of cortical cleanup by focusing on hydrodissection. J Cataract Refract Surg 26:188–197

    Article  CAS  PubMed  Google Scholar 

  22. Apple DJ, Peng Q, Visessook N et al (2000) Surgical prevention of posterior capsule opacification: 1. How are we progressing in eliminating this complication of cataract surgery? J Cataract Refract Surg 26:180–187

    Article  CAS  PubMed  Google Scholar 

  23. Ram J, Apple DJ, Peng Q et al (1999) Update on fixation of rigid and foldable posterior chamber intraocular lenses: II. Choosing the correct haptic fixation and intraocular lens design to help eradicate posterior capsule opacification. Ophthalmology 106:891–900

    Article  CAS  PubMed  Google Scholar 

  24. Aykan U, Bilge AH, Karadayi K et al (2003) The effect of capsulorhexis size on development of posterior capsule opacification: small (4.5 to 5.0 mm) versus large (6.0 to 7.0 mm). Eur J Ophthalmol 13(6):541–545

    CAS  PubMed  Google Scholar 

  25. Ravalico G, Tognetto D, Palomba M et al (1996) Capsulorhexis size and posterior capsule opacification. J Cataract Refract Surg 22(1):98–103

    Article  CAS  PubMed  Google Scholar 

  26. Hollick EJ, Spalton DJ, Meacock WR (1999) The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol 128(3):271–279

    Article  CAS  PubMed  Google Scholar 

  27. Wejde G, Kugelberg M, Zetterström C (2004) Position of anterior capsulorhexis and posterior capsule opacification. Acta Ophthalmol Scand 82:531–534

    Article  PubMed  Google Scholar 

  28. Langwińska-Wośko E, Broniek-Kowalik K, Szulborski K (2011) The impact of capsulorhexis diameter, localization and shape on posterior capsule opacification. Med Sci Monit 17:CR577–CR582

    PubMed Central  PubMed  Google Scholar 

  29. Hayashi K, Hayashi H, Nakao F, Hayashi F (1997) Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Am J Ophthalmol 123:441–447

    Article  CAS  PubMed  Google Scholar 

  30. Kimura W, Yamanishi S, Kimura T et al (1998) Measuring the anterior capsule opening after cataract surgery to assess capsule shrinkage. J Cataract Refract Surg 24:1235–1238

    Article  CAS  PubMed  Google Scholar 

  31. Nishi O, Nishi K, Akura J (2002) Speed of capsular bent formation at the optic edge of acrylic, silicone and poly(methyl methacrylate)lenses. J Cataract Refract Surg 28:431–437

    Article  PubMed  Google Scholar 

  32. Auffarth GU, Golescu A, Becker KA et al (2003) Quantification of posterior capsule opacification with round and sharp edge intraocular lenses. Ophthalmology 110:772–780

    Article  PubMed  Google Scholar 

  33. Nishi O (1999) Posterior capsule opacification. Part I: experimental investigations. J Cataract Refract Surg 25:106–117

    Article  CAS  PubMed  Google Scholar 

  34. Nixon DR, Apple DJ (2006) Evaluation of lens epithelial cell migration in vivo at the haptic-optic junction of a one-piece hydrophobic acrylic intraocular lens. Am J Ophthalmol 142:557–562

    Article  PubMed  Google Scholar 

  35. Humphry RC, Davies EG, Jacob TJC et al (1988) The human anterior lens capsule – an attempted chemical debridement of epithelial cells by ethylenediaminetetracetic acid (EDTA) and trypsin. Br J Ophthalmol 72:406–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fernandez V, Fragoso MA, Billotte C et al (2004) Efficacy of various drugs in the prevention of posterior capsule opacification: experimental study of rabbit eyes. J Cataract Refract Surg 30:2598–2605

    Article  PubMed  Google Scholar 

  37. Nishi O, Nishi K, Hikida M (1991) Removal of lens epithelial cells by dispersion with enzymatic treatment followed by aspiration. Ophthalmic Surg 22:444–450

    CAS  PubMed  Google Scholar 

  38. Nishi O, Nishi K, Hikida M (1993) Removal of lens epithelial cells following loosening of the junctional complex. J Cataract Refract Surg 19:56–61

    Article  CAS  PubMed  Google Scholar 

  39. Walker JL, Wolff IM, Zhang L et al (2007) Activation of SRC kinases signals induction of posterior capsule opacification. Invest Ophthalmol Vis Sci 48(5):2214–2223

    Article  PubMed  Google Scholar 

  40. Maloof AJ, Neilson G, Milverton EJ et al (2003) Selective and specific targeting of lens epithelial cells during cataract surgery using sealed-capsule irrigation. J Cataract Refract Surg 29:1566–1568

    Article  PubMed  Google Scholar 

  41. Maloof AJ, Pandey SK, Neilson G et al (2005) Selective death of lens epithelial cells using demineralized water and Triton-X-100 with PerfectCapsule sealed-capsule irrigation; a histologic study in rabbit eyes. Arch Ophthalmol 123:1378–1384

    Article  PubMed  Google Scholar 

  42. Rabsiber TM, Limberger IJ, Reuland AJ et al (2007) Long-term results of sealed capsule irrigation using distilled water to prevent posterior capsule opacification: a prospective clinical randomized trial. Br J Ophthalmol 91:912–915

    Article  Google Scholar 

  43. Crowston JG, Maloof AJ, Healey PR et al (2003) Water modulation of lens epithelial cells during cataract surgery. J Cataract Refract Surg 29:2464–2465

    Article  PubMed  Google Scholar 

  44. Crowston JG, Healey PR, Hopley C et al (2004) Water-mediated lysis of lens epithelial cells attached to lens capsule. J Cataract Refract Surg 30:1102–1106

    Article  PubMed  Google Scholar 

  45. Isakov I, Madjarov B, Bartov E (1995) Safe method for cleaning the posterior lens capsule. J Cataract Refract Surg 21(4):371–372

    Article  CAS  PubMed  Google Scholar 

  46. Mathey CF, Kohnen TB, Ensikat HJ et al (1994) Polishing methods for the lens capsule: histology and scanning electron microscopy. J Cataract Refract Surg 20(1):64–69

    Article  CAS  PubMed  Google Scholar 

  47. Nekolová J, Jirásková N, Pozlerová J et al (2009) Three-year follow-up of posterior capsule opacification after AquaLase and NeoSoniX phacoemulsification. Am J Ophthalmol 148(3):390–395

    Article  PubMed  Google Scholar 

  48. Mackool RJ, Brint SF (2004) AquaLase: a new technology for cataract extraction. Curr Opin Ophthalmol 15:40–43

    Article  PubMed  Google Scholar 

  49. Dodick JM, Christiansen J (1991) Experimental studies on the development and propagation of shock waves created by interaction of short Nd:YAG laser pulses with a titanium target; possible implications for Nd:YAG laser phacolysis of the cataractous human lens. J Cataract Refract Surg 17:794–797

    Article  CAS  PubMed  Google Scholar 

  50. Dodick JM, Sperber LTD, Lally JM et al (1993) Neodymium-YAG laser phacolysis of the human cataractous lens. Arch Ophthalmol 111:903–904

    Article  CAS  PubMed  Google Scholar 

  51. Pollhammer M, Meiller R, Rummelt C et al (2007) In situ ablation of lens epithelial cells in porcine eyes with the laser photolysis system. J Cataract Refract Surg 33:697–701

    Article  PubMed  Google Scholar 

  52. Mamalis N, Grossniklaus HE, Waring GO 3rd et al (2010) Ablation of lens epithelial cells with a laser photolysis system: histopathology, ultrastructure, and immunochemistry. J Cataract Refract Surg 36(6):1003–1010

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wehner W, Waring GO 3rd, Mamalis N et al (2010) Prevention of lens capsule opacification with ARC neodymium:YAG laser photolysis after phacoemulsification. J Cataract Refract Surg 36(6):881–884

    Article  PubMed  Google Scholar 

  54. Olivero DK, Furcht LT (1993) Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Invest Ophthalmol Vis Sci 34:2825–2834

    CAS  PubMed  Google Scholar 

  55. Linnola RJ, Sund M, Ylönen R, Pihlajaniemi T (1999) Adhesion of soluble fibronectin, laminin, and collagen type IV to intraocular lens materials. J Cataract Refract Surg 25:1486–1491

    Article  CAS  PubMed  Google Scholar 

  56. Kappelhof JP, Pameyer JH, DeJong PTVM (1986) The proteinaceous coating and cytology of implant lenses in rabbits. Am J Ophthalmol 102:750–758

    CAS  PubMed  Google Scholar 

  57. Linnola RJ, Werner L, Pandey SK et al (2000) Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes. Part I: histologic sections. J Cataract Refract Surg 26:1792–1806

    Article  CAS  PubMed  Google Scholar 

  58. Linnola RJ, Werner L, Pandey SK et al (2000) Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes. Part 2: explanted intraocular lenses. J Cataract Refract Surg 26:1807–1818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Werner M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Liu, E., Mamalis, N., Werner, L. (2014). Laser Photolysis System and PCO Prevention. In: Saika, S., Werner, L., Lovicu, F. (eds) Lens Epithelium and Posterior Capsular Opacification. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54300-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54300-8_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54299-5

  • Online ISBN: 978-4-431-54300-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics