Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 656 Accesses

Abstract

Many complex transition-metal oxides show the insulator-metal transition, on which the vanishing conductivity is driven either by the divergent carrier mass or by the decrease of the carrier density. The electron-correlation driven insulator-metal transition mostly shows the former type, while the insulator-metal transition in high-temperature superconducting cuprates is known to be of the latter type. In this chapter, we present another example of the carrier-density driven insulator-metal transition in the d-electron system Ti\(_{2}\)O\(_{3}\). We systematically study the charge dynamics in thermally and doping induced insulator-metal transitions of (Ti\(_{1-\mathrm{{x}}}\)V\(_{\mathrm{{x}}}\))\(_{2}\)O\(_{3}\). The origin of the observed doped-insulator-like characteristics, such as small Drude weight proportional to the doping level x, is proved to stem from the robust singlet formation on the Ti-Ti dimer. In addition, we closely investigate the dynamics of the doped holes in (Ti\(_{1-\mathrm{{x}}}\)V\(_{\mathrm{{x}}}\))\(_{2}\)O\(_{3}\) and have found that the doped holes show the ferromagnetic correlation and large negative magnetoresistance, while showing an extraordinarily large effective mass. We have ascribed such strong mass renormalization to a polaron effect originating from the strong electron-phonon coupling on the dimer sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually it has been experimentally unclear whether the gradual temperature change is a definite phase transition or a crossover.

  2. 2.

    In reality, \(E_{\mathrm{p }}\) is expected not to bear a direct proportional relationship to \(d_{\mathrm{Ti-Ti }}\). \(E_{\mathrm{p }}\) satisfies the relation \(E_{\mathrm{p }} \propto t\) for the transfer integral \(t\) between the \(a_{1g}\) orbitals within the limited-basis Hartree-Fock approximation, and \(t\) between the \(3z^2-r^2\) orbitals in the Ti-Ti dimer shows the dependence \(-t_{3z^2-r^2, 3z^2-2} = (dd\sigma ) \propto d^{-5}\) for the interatomic distance \(d\), resulting in the relation \(E_{\mathrm{p }} \propto d_{\mathrm{Ti-Ti }}^{-5}\).

  3. 3.

    The antiferromagnetic coupling is also expected from the Kanamori-Goodenough rule.

  4. 4.

    In this case, the anisotropy of the band dispersion (namely Fermi velocity) is small judging from that of the resistivity (\(\rho _c/\rho _{ab} =1.6\)).

  5. 5.

    We suppose that the carriers (holes) are coupled to the dimeric distortion to form a large polaron and can still propagate as a Bloch state. In this case, the conductivity increases with decreasing temperature while accompanying the phonon renormalization. In fact, in a simple electron-boson coupling model, the conductivity or the carrier mobility increases toward low temperature [46].

  6. 6.

    At this time it is not clear how the proposed polaronic heavy-mass state is related to the high-temperature metallic phase of the parent material. The clue feature is not observed due to the incoherent structure (Fig. 4.9).

References

  1. Morin FJ (1959) Phys Rev Lett 3:34

    Article  ADS  Google Scholar 

  2. Mattheiss LF (1996) J Phys Condens Matter 8:5987

    Article  ADS  Google Scholar 

  3. Abrahams SC (1963) Phys Rev 130:2230

    Article  ADS  Google Scholar 

  4. Kendrick H, Arrott A, Werner SA (1968) J Appl Phys 39:585

    Article  ADS  Google Scholar 

  5. Moon RM, Riste T, Koehler WC, Abrahams SC (1969) J Appl Phys 40:1445

    Article  ADS  Google Scholar 

  6. Van Zandt LL, Honig JM, Goodenough JB (1968) J Appl Phys 39:594

    Article  ADS  Google Scholar 

  7. Zeiger HJ, Kaplan TA, Raccah PM (1971) Phys Rev Lett 26:1328

    Article  ADS  Google Scholar 

  8. Zeiger HJ (1975) Phys Rev B 11:5132

    Article  ADS  Google Scholar 

  9. Tanaka A (2004) J Phys Soc Jpn 73:152

    Article  ADS  Google Scholar 

  10. Qazilbash MM, Burch KS, Whisler D, Shrekenhamer D, Chae BG, Kim HT, Basov DN (2006) Phys Rev B 74:205118

    Article  ADS  Google Scholar 

  11. Chandrashekhar GV, Choi QW, Moyo J, Honig JM (1970) Mater Res Bull 5:999

    Article  Google Scholar 

  12. Imada M, Fujimori A, Tokura Y (1998) Rev Mod Phys 70:1039

    Article  ADS  Google Scholar 

  13. Rozenberg MJ, Kotliar G, Kajueter H, Thomas GA, Rapkine DH, Honig JM, Metcalf P (1995) Phys Rev Lett 75:105

    Article  ADS  Google Scholar 

  14. Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y (1995) Phys Rev B 51:9581

    Article  ADS  Google Scholar 

  15. Timusk T, Statt B (1999) Rep Prog Phys 62:61

    Article  ADS  Google Scholar 

  16. Lee PA, Nagaosa N, Wen X-G (2006) Rev Mod Phys 78:17

    Article  ADS  Google Scholar 

  17. Shin SH, Chandrashekhar GV, Loehman RE, Honig JM (1973) Phys Rev B 8:1364

    Article  ADS  Google Scholar 

  18. Honig JM, Reed TB (1968) Phys Rev 174:1020

    Article  ADS  Google Scholar 

  19. Lucovsky G, Sladek RJ, Allen JW (1977) Phys Rev B 16:5452

    Article  ADS  Google Scholar 

  20. Lu SSM, Pollak FH, Raccah PM (1978) Phys Rev B 17:1970

    Article  ADS  Google Scholar 

  21. Rice CE, Robinson WR (1977) J Solid State Chem 21:145

    Article  ADS  Google Scholar 

  22. Rao CNR, Loehman RE, Honig JM (1968) Phys Lett 27A:271

    ADS  Google Scholar 

  23. Capponi JJ, Marezio M, Dumas J, Schienker C (1976) Solid State Commun 20:893

    Article  ADS  Google Scholar 

  24. Takenaka K, Shiozaki R, Okuyama S, Nohara J, Osuka A, Takayanagi Y, Sugai S (2002) Phys Rev B 65:092405

    Article  ADS  Google Scholar 

  25. Poteryaev AI, Lichtenstein AI, Kotliar G (2004) Phys Rev Lett 93:086401

    Article  ADS  Google Scholar 

  26. Ginzburg DM (1992) Physical properties of high temperature superconductors, vol 3. World Scientific, Singapore

    Google Scholar 

  27. Tokura Y (2006) Rep Prog Phys 69:797

    Article  ADS  Google Scholar 

  28. Affleck I, Kennedy T, Lieb EH, Tasaki H (1987) Phys Rev Lett 59:799

    Article  ADS  Google Scholar 

  29. Dumas J, Schlenker C, Mag J (1978) Mag Mat 7:252

    Article  ADS  Google Scholar 

  30. Dumas J, Schlenker C (1979) J Phys C: Solid State Phys 12:2381

    Article  ADS  Google Scholar 

  31. Honig JM, Van Zandt LL, Reed TB, Sohn J (1969) Phys Rev 182:863

    Article  ADS  Google Scholar 

  32. Dumas J, Schlenker C, Tholence JL, Tournier R (1979) Phys Rev B 20:3913

    Article  ADS  Google Scholar 

  33. Miyako Y, Chikazawa S, Saito T, Yuochunas YG (1981) J Appl Phys 52:1779

    Article  ADS  Google Scholar 

  34. Berthier L, Bouchaud JP (2002) Phys Rev B 66:054404

    Article  ADS  Google Scholar 

  35. Lee LW, Young AP (2003) Phys Rev Lett 90:227203

    Article  MathSciNet  ADS  Google Scholar 

  36. Inaba J, Katsufuji T (2005) Phys Rev B 72:052408

    Article  ADS  Google Scholar 

  37. Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Furukawa N (1994) J Phys Soc Jpn 63:3931

    Article  ADS  Google Scholar 

  38. Furukawa N (1995) J Phys Soc Jpn 64:2734

    Article  ADS  Google Scholar 

  39. Kubo K, Ohata N (1972) J Phys Soc Jpn 33:21

    Article  ADS  Google Scholar 

  40. Searle CW, Wang ST (1969) Can J Phys 47:2703

    Article  ADS  Google Scholar 

  41. Sjöstrand ME, Keesom Phys PH (1973) Rev B 7:3558

    Article  Google Scholar 

  42. Tokura Y, Taguchi Y, Okada Y, Fujishima Y, Arima T, Kumagai K, Iye Y (1993) Phys Rev Lett 70:2126

    Article  ADS  Google Scholar 

  43. Uchida M, Fujioka J, Onose Y, Tokura Y (2008) Phys Rev Lett 101:066406

    Article  ADS  Google Scholar 

  44. Miyasaka S, Okuda T, Tokura Y (2000) Phys Rev Lett 85:5388

    Article  ADS  Google Scholar 

  45. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York

    Google Scholar 

  46. Puchkov AV, Bazov DN, Timusk T (1996) J Phys Condens Matter 8:10049

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Uchida .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Uchida, M. (2013). Charge Dynamics in a Doped Valence-Bond Solid System. In: Spectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54297-1_4

Download citation

Publish with us

Policies and ethics