Skip to main content

Photomechanical Response of Diarylethene Single Crystals

  • Chapter
  • First Online:

Abstract

It is a dream for chemists to construct molecular systems, which can transform shape changes of individual molecules induced by chemical or physical stimuli to macroscopic motion of materials and perform mechanical work. During the course of a study of single-crystalline photochromism of diarylethenes, we found that the surface morphology of the single crystals, as well as the bulk crystal shape, reversibly changes upon photoisomerization of component diarylethene molecules. Single crystals of 1,2-bis(2-ethyl-5-phenyl-3-thienyl)perfluorocyclopentene (3a) and 1,2-bis(5-ethyl-2-phenyl-4-thiazolyl)perfluorocyclopentene (4a) with sizes ranging from 10 to 100 μm change their shape from a square to a lozenge, whereas a rectangular single crystal of 1,2-bis(5-methyl-2-phenyl-4-thiazolyl)perfluorocyclopentene (5a) contracts in length. X-ray crystallographic analysis revealed that the geometrical structure changes of individual molecules in densely packed crystals induce the crystal shape deformation. A rod-like crystal prepared from 5a reversibly bends upon alternate irradiation with ultraviolet (UV) and visible light due to the gradient in the extent of the photoisomerization in the crystal. The fatigue resistance of the crystals is remarkably improved by mixing two diarylethene derivatives. Upon UV irradiation the mixed crystal can repeat the light-driven bending cycle more than 1,000 times and lift a metal load, which is several hundred times heavier than that of the crystal. A two-component mm-size cocrystal composed of 1,2-bis(2-methyl-5-(1-naphthyl)-3-thienyl)perfluorocyclopentene (8a) and perfluoronaphthalene (FN) also performs fatigue-resistant mechanical work. The robust light-driven actuators made of diarylethene molecules having substantial mechanical properties can be potentially applied in various micro- and nano-mechanical devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whittaker M, Wilson-Kubbbalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL (1995) A 35-Å movement of smooth muscle myosin on ADP release. Nature 378:748–751

    Article  CAS  Google Scholar 

  2. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72–191

    Article  CAS  Google Scholar 

  3. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for nanoworld. Wiley, Weinheim

    Book  Google Scholar 

  4. Bissell RA, Córdova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133–137

    Article  CAS  Google Scholar 

  5. Jiménez MC, Dietrich-Buchecker C, Sauvage J-P (2000) Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed 39:3284–3287

    Article  Google Scholar 

  6. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng H-R, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho C-M, Stoddart JF (2005) Linear artificial molecular muscles. J Am Chem Soc 127:9745–9759

    Article  CAS  Google Scholar 

  7. Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303:1845–1849

    Article  Google Scholar 

  8. Kelly TR, De Silva H, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401:150–152

    Article  CAS  Google Scholar 

  9. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155

    Article  CAS  Google Scholar 

  10. Eisenbach CD (1980) Isomerization of aromatic azo chromophores in poly(ethyl acrylate) network and photomechanical effect. Polymer 21:1175–1179

    Article  CAS  Google Scholar 

  11. Matéika L, Ilavský M, Dušek K, Wichterle O (1981) Photomechanical effects in crosslinked photochromic polymers. Polymer 22:1511–1515

    Article  Google Scholar 

  12. Irie M (1990) Photoresponsive polymers. Adv Polym Sci 94:28–67

    Google Scholar 

  13. Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501

    Article  CAS  Google Scholar 

  14. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:45

    Article  Google Scholar 

  15. Ikeda T, Mamiya J, Yu Y (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46:406–528

    Article  Google Scholar 

  16. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  17. Aliev AE, Oh J, Kozlov ME, Kunznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578

    Article  CAS  Google Scholar 

  18. Irie M, Uchida K, Eriguchi T, Tsuzuki H (1995) Photochromism of single crystalline diarylethenes. Chem Lett 899–900

    Google Scholar 

  19. Jean-Ruel H, Cooney RR, Gao M, Lu C, Kochman M, Morrison CA, Miller RJD (2011) Femtosecond dynamics of the ring closing process of diarylethene: a case study of electrocyclic reactions in photochromic single crystals. J Phys Chem A 115:13158–13168

    Article  CAS  Google Scholar 

  20. Kobatake S, Uchida K, Tsuchida E, Irie M (2002) Single-crystalline photochromism of diarylethenes: reactivity–structure relationship. Chem Commun 2804–2805

    Google Scholar 

  21. Yamada T, Kobatake S, Muto K, Irie M (2000) X-ray crystallographic study on single crystalline photochromism of bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. J Am Chem Soc 122:1589–1592

    Article  CAS  Google Scholar 

  22. Yamada T, Kobatake S, Irie M (2000) X-ray crystallographic study on single-crystalline photochromism of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bull Chem Soc Jpn 73:2179–2184

    Article  CAS  Google Scholar 

  23. Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772

    Article  CAS  Google Scholar 

  24. Irie M (2008) Photochromism and molecular mechanical devices. Bull Chem Soc Jpn 81:917–926

    Article  CAS  Google Scholar 

  25. Irie M (2010) Photochromism of diarylethene single molecules and single crystals. Photochem Photobiol Sci 9:1535–1542

    Article  CAS  Google Scholar 

  26. Reddy CM, Gundakaram RC, Basavoju S, Kirchner MT, Padmanabhan KA, Desiraju GR (2005) Structural basis for bending of organic crystals. Chem Commun 3945–3947

    Google Scholar 

  27. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781

    Article  CAS  Google Scholar 

  28. Kuroki L, Takami S, Yoza K, Morimoto M, Irie M (2010) Photoinduced shape changes of diarylethene single crystals: correlation between shape and molecular packing. Photochem Photobiol Sci 9:221–225

    Article  CAS  Google Scholar 

  29. Terao F, Morimoto M, Irie M (2012) Light-driven molecular crystal actuators: rapid and reversible bending of rod-like mixed crystals of diarylethene derivatives. Angew Chem Int Ed 51:901–904

    Article  CAS  Google Scholar 

  30. Morimoto M, Irie M (2010) A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc 132:14172–14178

    Article  CAS  Google Scholar 

  31. Uchida K, Sukata S, Matsuzawa Y, Akazawa M, deJong JJD, Katsonis N, Kojima Y, Nakamura S, Areephong J, Meetsma A, Feringa BL (2008) Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem Commun 326–328

    Google Scholar 

  32. Kobatake S, Hasegawa H, Miyaura K (2011) High-conversion photochromism of a diarylethene single crystal accompanying the crystal shape deformation. Cryst Growth Des 1223–1229

    Google Scholar 

  33. Koshima H, Ojima N, Uchimoto H (2009) Mechanical motion of azobenzene crystals upon photoirradiation. J Am Chem Soc 131:6890–6891

    Article  CAS  Google Scholar 

  34. Koshima H, Takechi K, Uchimoto H, Shiro M, Hashizume D (2011) Photomechanical motion of salicylideneaniline microcrystals. Chem Commun 47:11423–11425

    Article  CAS  Google Scholar 

  35. Koshima H, Nakaya H, Uchimoto H, Ojima N (2012) Photomechanical motion of furylfulgide crystals. Chem Lett 41:107–109

    Article  CAS  Google Scholar 

  36. Al-Kaysi RO, Müller AM, Bardeen CJ (2006) Photochemically driven shape changes of crystalline organic nanorods. J Am Chem Soc 128:15938–15939

    Article  CAS  Google Scholar 

  37. Al-Kaysi RO, Bardeen CJ (2007) Reversible photoinduced shape changes of crystalline organic nanorods. Adv Mater 19:1276–1280

    Article  CAS  Google Scholar 

  38. Zhu L, Al-Kaysi RO, Bardeen CJ (2011) Reversible photoinduced twisting of molecular crystal microribbons. J Am Chem Soc 133:12569–12575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Irie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Irie, M. (2013). Photomechanical Response of Diarylethene Single Crystals. In: Irie, M., Yokoyama, Y., Seki, T. (eds) New Frontiers in Photochromism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54291-9_1

Download citation

Publish with us

Policies and ethics