New Methods in Conformal Partial Wave Analysis

  • Christoph Neumann
  • Karl-Henning Rehren
  • Lena Wallenhorst
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


We report on progress towards the partial wave analysis of higher correlation functions in conformal quantum field theory.


Partial Wave Operator Product Expansion Casimir Operator Conformal Group Partial Wave Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



KHR is grateful for helpful discussions with N.M. Nikolov and I. Todorov, and also with Ch. Mishra (IISER, Kolkata) in an early stage of this work. Supported in part by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)MATHGoogle Scholar
  2. 2.
    Bakalov, B., Nikolov, N., Rehren, K.-H., Todorov, I.: Comm. Math. Phys. 271, 223–246 (2007)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bargmann, V., Todorov, I.T.: J. Math. Phys. 18, 1141–1148 (1977)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bischoff, M.: Über die Pol-Struktur höherer Korrelationsfunktionen in global konform-invarianter Quantenfeldtheorie, Univ. Göttingen Diploma Thesis 2009 (in German)Google Scholar
  5. 5.
    Dobrev, V.K., Mack, G., Petkova, V.B., Petrova, S.G., Todorov, I.T.: Lect. Notes Phys. 63, 1–280 (1977)CrossRefGoogle Scholar
  6. 6.
    Dolan, F.A., Osborn, H.: Nucl. Phys. B 678, 491–507 (2004)Google Scholar
  7. 7.
    Lang, K., Rühl, W.: Nucl. Phys. B 402, 573–603 (1993)Google Scholar
  8. 8.
    Mack, G.: Comm. Math. Phys. 53, 155–184 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mintchev, M.C., Petkova, V.B., Todorov, I.T.: Conformal Invariance in Quantum Field Theory, Pubblicazione della classe di science della Scuola Normale Superiore di Pisa, pp. 1–273 (1978)Google Scholar
  10. 10.
    Nikolov, N., Todorov, I.: Comm. Math. Phys. 218, 417–436 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nikolov, N., Rehren, K.-H., Todorov, I.: Nucl. Phys. B 722, 266–296 (2005)Google Scholar
  12. 12.
    Nikolov, N., Rehren, K.-H., Todorov, I.: Bulg. J. Phys. 35 (s1), 113–123 (2008) [arXiv:0711. 0628]Google Scholar
  13. 13.
    Nikolov, N., Rehren, K.-H., Todorov, I.: Comm. Math. Phys. 279, 225–250 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rathlev, D.: Higher Order Correlation Functions in Globally Conformal QFT, University of Göttingen Bachelor Thesis 2010 (in German)Google Scholar
  15. 15.
    Rehren, K.-H., Schroer, B.: Nucl. Phys. B 295, 229–242 (1988)Google Scholar
  16. 16.
    Yngvason, J.: Comm. Math. Phys. 34, 315–333 (1973)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Christoph Neumann
    • 1
  • Karl-Henning Rehren
    • 1
    • 2
  • Lena Wallenhorst
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  2. 2.Courant Research Centre “Higher Order Structures in Mathematics”Universität GöttingenGöttingenGermany

Personalised recommendations