Varna Lecture on L2-Analysis of Minimal Representations

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


Minimal representations of a real reductive group G are the ‘smallest’ irreducible unitary representations of G. The author suggests a program of global analysis built on minimal representations from the philosophy:

small representation of a group = large symmetries in a representation space.

This viewpoint serves as a driving force to interact algebraic representation theory with geometric analysis of minimal representations, yielding a rapid progress on the program. We give a brief guidance to recent works with emphasis on the Schrödinger model.


Jordan Algebra Minimal Representation Irreducible Unitary Representation Geometric Quantization Nilpotent Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author warmly thanks Professor Vladimir Dobrev for his hospitality during the ninth International Workshop: Lie Theory and its Applications in Physics in Varna, Bulgaria, 20–26 June 2011. Thanks are also due to anonymous referees for careful readings.

The author was partially supported by Grant-in-Aid for Scientific Research (B) (22340026), Japan Society for the Promotion of Sciences.


  1. 1.
    Achab, D., Faraut, J.: Analysis of the Brylinski–Kostant model for spherical minimal representations. Can. J. Math. 64, 721–754 (2012) arXiv:1101.4402 (to appear)Google Scholar
  2. 2.
    Bargmann, V., Todorov, I.T.: Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(n). J. Math. Phys. 18, 1141–1148 (1977)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ben Saïd, S., Kobayashi, T., Ørsted, B.: Laguerre semigroup and Dunkl operators. Compos. Math. 148, 1265–1336 (2012) (cf. arXiv:0907.3749).
  4. 4.
    Brylinski, R., Kostant, B.: Minimal representations, geometric quantization, and unitarity. Proc. Natl. Acad. Sci. USA 91, 6026–6029 (1994)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dvorsky, A., Sahi, S.: Explicit Hilbert spaces for certain unipotent representations. II. Invent. Math. 138(1), 203–224 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Representation Theory of Reductive Groups, Park City, Utah, 1982, pp. 97–143. Progr. Math., vol. 40. Birkhäuser, Boston (1983)Google Scholar
  7. 7.
    Folland, G.B.: Harmonic analysis in phase space. In: Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)Google Scholar
  8. 8.
    Gan, W.-T., Savin, G.: On minimal representations definitions and properties. Represent. Theor. 9, 46–93 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hilgert, J., Kobayashi, T., Mano, G., Möllers, J.: Orthogonal polynomials associated to a certain fourth order differential equation. Ramanujan J. 26, 295–310 (2011) (cf. Scholar
  10. 10.
    Hilgert, J., Kobayashi, T., Mano, G., Möllers, J.: Special functions associated to a certain fourth order differential operator. Ramanujan J. 26, 1–34 (2011) (cf. Google Scholar
  11. 11.
    Hilgert, J., Kobayashi, T., Möllers, J.: Minimal representations via Bessel operators, to appear in J. Math. Soc. Japan, p. 72 (2012) (cf. arXiv:1106.3621)Google Scholar
  12. 12.
    Hilgert, J., Kobayashi, T., Möllers, J., Ørsted, B.: Segal–Bargmann transform and Fock space realization for minimal holomorphic representations. J. Funct. Anal. 263, 3492–3563 (2012) (cf. (to appear)Google Scholar
  13. 13.
    Howe, R.: The oscillator semigroup. Proc. Sympos. Pure Math., vol. 48, pp. 61–132. Amer. Math. Soc., Providence (1988)Google Scholar
  14. 14.
    Joseph, A.: The minimal orbit in a simple lie algebra and its associated maximal ideal. Ann. Scient. Ec. Norm. Sup. 9, 1–30 (1976)MATHGoogle Scholar
  15. 15.
    Kazhdan, D.: The minimal representation of \(D_{4}\). In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92, pp. 125–158. Birkhäuser, Boston (1990)Google Scholar
  16. 16.
    Kobayashi, T.: The restriction of \(A_{\mathfrak{q}}(\lambda )\) to reductive subgroups. Proc. Jpn. Acad. 69, 262–267 (1993).
  17. 17.
    Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups and its application. Invent. Math. 117, 181–205 (1994).
  18. 18.
    Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\), II. — micro-local analysis and asymptotic K-support. Ann. Math. 147, 709–729 (1998).
  19. 19.
    Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\), III. — restrcition of Harish-Chandra modules and associated varieties. Invent. Math. 131, 229–256 (1998).
  20. 20.
    Kobayashi, T.: Discretely Decomposable Restrictions of Unitary Representations of Reductive Lie Groups — Examples and Conjectures. Advanced Study in Pure Math., vol. 26, pp. 98–126 (2000). Math. Soc. Japan
  21. 21.
    Kobayashi, T.: Conformal geometry and global solutions to the Yamabe equations on classical pseudo-Riemannian manifolds. In: Proceedings of the 22nd Winter School “Geometry and Physics”, Srní, 2002. Rend. Circ. Mat. Palermo (2) Suppl. 71, pp. 15–40 (2003).
  22. 22.
    Kobayashi, T.: Restrictions of Unitary Representations of Real Reductive Groups. Progress in Mathematics, vol. 229, pp. 139–207. Birkhäuser, Basel (2005).
  23. 23.
    Kobayashi, T.: Algebraic analysis of minimal representations. Publ. Res. Inst. Math. Sci. 47, 585–611 (2011); Special issue in commemoration of the golden jubilee of algebraic analysis (cf. arXiv:1001.0224).
  24. 24.
    Kobayashi, T.: Branching problems of Zuckerman derived functor modules. In: Adams, J., Lian, B., Sahi, S. (eds.) Representation Theory and Mathematical Physics. Contemporary Mathematics, vol. 557, pp. 23–40. Amer. Math. Soc., Providence (2011). (cf. arXiv:1104.4399)
  25. 25.
    Kobayashi, T.: Geometric quantization, limits, and restrictions —some examples for elliptic and nilpotent orbits. In: Jeffrey, L., Ma, X., Vergne, M. (eds.) Geometric Quantization in the Non-compact Setting, Oberwolfach Reports, vol. 8, Issue 1, pp. 39–42. European Mathematical Society Publishing House (2011). DOI: 10.4171/OWR/2011/09
  26. 26.
    Kobayashi, T., Mano, G.: Integral formulas for the minimal representation of \(\mathrm{O}(p, 2)\). Acta Appl. Math. 86, 103–113 (2005) Google Scholar
  27. 27.
    Kobayashi, T., Mano, G.: The inversion formula and holomorphic extension of the minimal representation of the conformal group. In: Li, J.-S., Tan, E.-C., Wallach, N., Zhu, C.-B. (eds.) Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In honor of Roger E. Howe, pp. 159–223. Singapore University Press and World Scientific Publishing, Singapore (2007) (cf.
  28. 28.
    Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p, q). Mem. Amer. Math. Soc. 212, vi+132 (2011). no. 1000
  29. 29.
    Kobayashi, T., Möllers, J.: An integral formula for L 2-eigenfunctions of a fourth order Bessel-type differential operator. Integr. Transforms Spec. Functions 22, 521–531 (2011).
  30. 30.
    Kobayashi, T., Ørsted, B.: Conformal geometry and branching laws for unitary representations attached to minimal nilpotent orbits. C. R. Acad. Sci. Paris, vol. 326, 925–930 (1998)MATHCrossRefGoogle Scholar
  31. 31.
    Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). I. Realization via conformal geometry. Adv. Math. 180, 486–512 (2003).
  32. 32.
    Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). II. Branching laws. Adv. Math. 180, 513–550 (2003).
  33. 33.
    Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). III. Ultrahyperbolic equations on \({\mathbb{R}}^{p-1,q-1}\). Adv. Math. 180, 551–595 (2003).
  34. 34.
    Kobayashi, T., Oshima, Y.: Classification of discretely decomposable \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive symmetric pairs. Adv. Math. 231, 2013–2047 (2012) (cf. arXiv:1104.4400).
  35. 35.
    Kobayashi, T., Oshima, Y.: Classification of symmetric pairs that admit discretely decomposable \((\mathfrak{g},K)\)-modules, 18 pp. (cf. ), preprint
  36. 36.
    Kobayashi, T., Ørsted, B., Pevzner, M.: Geometric analysis on small unitary representations of \(GL(N, \mathbb{R})\). J. Funct. Anal. 260, 1682–1720 (2011)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Kostant, B.: The vanishing of scalar curvature and the minimal representation of \(\mathrm{SO}(4, 4)\). In: Connes, A., Duflo, M., Joseph, A., Rentschler, R. (eds.) Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92, pp. 85–124. Birkhäuser, Boston (1990)Google Scholar
  38. 38.
    Kowata, A., Moriwaki, M.: Invariant differential operators on the Schrödinger model for the minimal representation of the conformal group. J. Math. Sci. Univ. Tokyo 18, 355–395 (2011)MathSciNetMATHGoogle Scholar
  39. 39.
    Moriwaki, M.: Multiplicity-free decompositions of the minimal representation of the indefinite orthogonal group. Int. J. Math. 19, 1187–1201 (2008). Google Scholar
  40. 40.
    Sekiguchi, J.: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Jpn. 39, 127–138 (1987)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Todorov, I.T.: Derivation and Solution of an Infinite-Component Wave Equation for the Relativistic Coulomb Problem. Lecture Notes in Physics, Group Representations in Mathematics and Physics, Rencontres, Battelle Res. Inst., Seattle, 1969, vol. 6, pp. 254–278. Springer, Berlin (1970)Google Scholar
  42. 42.
    Torasso, P.: Méthode des orbites de Kirillov–Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J. 90, 261–377 (1997)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Vogan, D.A., Jr.: Singular unitary representations. In: Noncommutative Harmonic Analysis and Lie Groups, Marseille, 1980. Lecture Notes in Math., vol. 880, pp. 506–535. Springer, Berlin (1981)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Kavli IPMU and Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations