Skip to main content

Varna Lecture on L 2-Analysis of Minimal Representations

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

Minimal representations of a real reductive group G are the ‘smallest’ irreducible unitary representations of G. The author suggests a program of global analysis built on minimal representations from the philosophy:

small representation of a group = large symmetries in a representation space.

This viewpoint serves as a driving force to interact algebraic representation theory with geometric analysis of minimal representations, yielding a rapid progress on the program. We give a brief guidance to recent works with emphasis on the Schrödinger model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achab, D., Faraut, J.: Analysis of the Brylinski–Kostant model for spherical minimal representations. Can. J. Math. 64, 721–754 (2012) arXiv:1101.4402 (to appear)

    Google Scholar 

  2. Bargmann, V., Todorov, I.T.: Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(n). J. Math. Phys. 18, 1141–1148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Saïd, S., Kobayashi, T., Ørsted, B.: Laguerre semigroup and Dunkl operators. Compos. Math. 148, 1265–1336 (2012) (cf. arXiv:0907.3749). http://dx.doi.org/10.1112/S0010437X11007445

  4. Brylinski, R., Kostant, B.: Minimal representations, geometric quantization, and unitarity. Proc. Natl. Acad. Sci. USA 91, 6026–6029 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dvorsky, A., Sahi, S.: Explicit Hilbert spaces for certain unipotent representations. II. Invent. Math. 138(1), 203–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Representation Theory of Reductive Groups, Park City, Utah, 1982, pp. 97–143. Progr. Math., vol. 40. Birkhäuser, Boston (1983)

    Google Scholar 

  7. Folland, G.B.: Harmonic analysis in phase space. In: Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  8. Gan, W.-T., Savin, G.: On minimal representations definitions and properties. Represent. Theor. 9, 46–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilgert, J., Kobayashi, T., Mano, G., Möllers, J.: Orthogonal polynomials associated to a certain fourth order differential equation. Ramanujan J. 26, 295–310 (2011) (cf. http://dx.doi.org/10.1007/s11139-011-9338-6arXiv:0907.2612)

    Google Scholar 

  10. Hilgert, J., Kobayashi, T., Mano, G., Möllers, J.: Special functions associated to a certain fourth order differential operator. Ramanujan J. 26, 1–34 (2011) (cf. http://arxiv.org/abs/0907.2608arXiv:0907.2608). http://dx.doi.org/10.1007/s11139-011-9315-0

    Google Scholar 

  11. Hilgert, J., Kobayashi, T., Möllers, J.: Minimal representations via Bessel operators, to appear in J. Math. Soc. Japan, p. 72 (2012) (cf. arXiv:1106.3621)

    Google Scholar 

  12. Hilgert, J., Kobayashi, T., Möllers, J., Ørsted, B.: Segal–Bargmann transform and Fock space realization for minimal holomorphic representations. J. Funct. Anal. 263, 3492–3563 (2012) (cf. http://dx.doi.org/10.1016/j.jfa.2012.08.026arXiv:1203.5462) (to appear)

    Google Scholar 

  13. Howe, R.: The oscillator semigroup. Proc. Sympos. Pure Math., vol. 48, pp. 61–132. Amer. Math. Soc., Providence (1988)

    Google Scholar 

  14. Joseph, A.: The minimal orbit in a simple lie algebra and its associated maximal ideal. Ann. Scient. Ec. Norm. Sup. 9, 1–30 (1976)

    MATH  Google Scholar 

  15. Kazhdan, D.: The minimal representation of \(D_{4}\). In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92, pp. 125–158. Birkhäuser, Boston (1990)

    Google Scholar 

  16. Kobayashi, T.: The restriction of \(A_{\mathfrak{q}}(\lambda )\) to reductive subgroups. Proc. Jpn. Acad. 69, 262–267 (1993). http://projecteuclid.org/euclid.pja/1195511349

  17. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive subgroups and its application. Invent. Math. 117, 181–205 (1994). http://dx.doi.org/10.1007/BF01232239

  18. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\), II. — micro-local analysis and asymptotic K-support. Ann. Math. 147, 709–729 (1998). http://dx.doi.org/10.2307/120963

  19. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(\lambda )\), III. — restrcition of Harish-Chandra modules and associated varieties. Invent. Math. 131, 229–256 (1998). http://dx.doi.org/10.1006/jfan.1997.3128

  20. Kobayashi, T.: Discretely Decomposable Restrictions of Unitary Representations of Reductive Lie Groups — Examples and Conjectures. Advanced Study in Pure Math., vol. 26, pp. 98–126 (2000). Math. Soc. Japan http://www.ms.u-tokyo.ac.jp/~toshi/pub/57.html

  21. Kobayashi, T.: Conformal geometry and global solutions to the Yamabe equations on classical pseudo-Riemannian manifolds. In: Proceedings of the 22nd Winter School “Geometry and Physics”, Srní, 2002. Rend. Circ. Mat. Palermo (2) Suppl. 71, pp. 15–40 (2003). http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1365.pdf

  22. Kobayashi, T.: Restrictions of Unitary Representations of Real Reductive Groups. Progress in Mathematics, vol. 229, pp. 139–207. Birkhäuser, Basel (2005). http://dx.doi.org/10.1007/b139076

  23. Kobayashi, T.: Algebraic analysis of minimal representations. Publ. Res. Inst. Math. Sci. 47, 585–611 (2011); Special issue in commemoration of the golden jubilee of algebraic analysis (cf. arXiv:1001.0224). http://dx.doi.org/10.2977/PRIMS/45

  24. Kobayashi, T.: Branching problems of Zuckerman derived functor modules. In: Adams, J., Lian, B., Sahi, S. (eds.) Representation Theory and Mathematical Physics. Contemporary Mathematics, vol. 557, pp. 23–40. Amer. Math. Soc., Providence (2011). http://arxiv.org/abs/1104.4399 (cf. arXiv:1104.4399)

  25. Kobayashi, T.: Geometric quantization, limits, and restrictions —some examples for elliptic and nilpotent orbits. In: Jeffrey, L., Ma, X., Vergne, M. (eds.) Geometric Quantization in the Non-compact Setting, Oberwolfach Reports, vol. 8, Issue 1, pp. 39–42. European Mathematical Society Publishing House (2011). http://dx.doi.org/10.4171/OWR/2011/09. DOI: 10.4171/OWR/2011/09

  26. Kobayashi, T., Mano, G.: Integral formulas for the minimal representation of \(\mathrm{O}(p, 2)\). Acta Appl. Math. 86, 103–113 (2005) http://www.springerlink.com/content/pt65717043175035/fulltext.pdf

    Google Scholar 

  27. Kobayashi, T., Mano, G.: The inversion formula and holomorphic extension of the minimal representation of the conformal group. In: Li, J.-S., Tan, E.-C., Wallach, N., Zhu, C.-B. (eds.) Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In honor of Roger E. Howe, pp. 159–223. Singapore University Press and World Scientific Publishing, Singapore (2007) (cf. http://uk.arxiv.org/abs/math.DG/0607007math.RT/0607007)

  28. Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p, q). Mem. Amer. Math. Soc. 212, vi+132 (2011). http://dx.doi.org/10.1090/S0065-9266-2011-00592-7 no. 1000

  29. Kobayashi, T., Möllers, J.: An integral formula for L 2-eigenfunctions of a fourth order Bessel-type differential operator. Integr. Transforms Spec. Functions 22, 521–531 (2011). http://dx.doi.org/10.1080/10652469.2010.533270

  30. Kobayashi, T., Ørsted, B.: Conformal geometry and branching laws for unitary representations attached to minimal nilpotent orbits. C. R. Acad. Sci. Paris, vol. 326, 925–930 (1998)

    Article  MATH  Google Scholar 

  31. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). I. Realization via conformal geometry. Adv. Math. 180, 486–512 (2003). http://dx.doi.org/10.1016/S0001-8708(03)00012-4

  32. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). II. Branching laws. Adv. Math. 180, 513–550 (2003). http://dx.doi.org/10.1016/S0001-8708(03)00013-6

  33. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of \(\mathrm{O}(p,q)\). III. Ultrahyperbolic equations on \({\mathbb{R}}^{p-1,q-1}\). Adv. Math. 180, 551–595 (2003). http://dx.doi.org/10.1016/S0001-8708(03)00014-8

  34. Kobayashi, T., Oshima, Y.: Classification of discretely decomposable \(A_{\mathfrak{q}}(\lambda )\) with respect to reductive symmetric pairs. Adv. Math. 231, 2013–2047 (2012) (cf. http://arxiv.org/abs/1104.4400 arXiv:1104.4400). http://dx.doi.org/10.1016/j.aim.2012.07.006

  35. Kobayashi, T., Oshima, Y.: Classification of symmetric pairs that admit discretely decomposable \((\mathfrak{g},K)\)-modules, 18 pp. (cf. http://arxiv.org/abs/1202.5743arXiv:1202.5743 ), preprint

  36. Kobayashi, T., Ørsted, B., Pevzner, M.: Geometric analysis on small unitary representations of \(GL(N, \mathbb{R})\). J. Funct. Anal. 260, 1682–1720 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kostant, B.: The vanishing of scalar curvature and the minimal representation of \(\mathrm{SO}(4, 4)\). In: Connes, A., Duflo, M., Joseph, A., Rentschler, R. (eds.) Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92, pp. 85–124. Birkhäuser, Boston (1990)

    Google Scholar 

  38. Kowata, A., Moriwaki, M.: Invariant differential operators on the Schrödinger model for the minimal representation of the conformal group. J. Math. Sci. Univ. Tokyo 18, 355–395 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Moriwaki, M.: Multiplicity-free decompositions of the minimal representation of the indefinite orthogonal group. Int. J. Math. 19, 1187–1201 (2008). http://dx.doi.org/10.1142/S0129167X08005084

    Google Scholar 

  40. Sekiguchi, J.: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Jpn. 39, 127–138 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Todorov, I.T.: Derivation and Solution of an Infinite-Component Wave Equation for the Relativistic Coulomb Problem. Lecture Notes in Physics, Group Representations in Mathematics and Physics, Rencontres, Battelle Res. Inst., Seattle, 1969, vol. 6, pp. 254–278. Springer, Berlin (1970)

    Google Scholar 

  42. Torasso, P.: Méthode des orbites de Kirillov–Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J. 90, 261–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vogan, D.A., Jr.: Singular unitary representations. In: Noncommutative Harmonic Analysis and Lie Groups, Marseille, 1980. Lecture Notes in Math., vol. 880, pp. 506–535. Springer, Berlin (1981)

    Google Scholar 

Download references

Acknowledgements

The author warmly thanks Professor Vladimir Dobrev for his hospitality during the ninth International Workshop: Lie Theory and its Applications in Physics in Varna, Bulgaria, 20–26 June 2011. Thanks are also due to anonymous referees for careful readings.

The author was partially supported by Grant-in-Aid for Scientific Research (B) (22340026), Japan Society for the Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Kobayashi, T. (2013). Varna Lecture on L 2-Analysis of Minimal Representations. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_6

Download citation

Publish with us

Policies and ethics