A Continuous Bialgebra Structure on a Loop Algebra

  • Rémi Léandre
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


We define on the set of Fourier series on a Lie algebra operations which give on it the structure of a continuous bialgebra.


Poisson Structure Deformation Quantization Path Space Infinite Dimension Loop Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belavin, A., Drinfeld, V.: Triangle Equations and Simple Lie Algebras. Harwood Academic Publisher, Chur (1984)Google Scholar
  2. 2.
    Blaszak, M., Szablikowski, B.: J. Phys. A 40, 404002 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dito, G., Léandre, R.: J. Math. Phys. 48, 023509 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dito, G., Sternheimer, D.: In: Halbout, G. (ed.) Deformation Quantization, IRMA Lecture Math. Theor. Physics, vol. 1, pp. 9–54. Walter de Gruyter, Berlin (2002)Google Scholar
  5. 5.
    Etingof, P., Schiffman, O.: Lectures on Quantum Groups. International Press, Boston (1998)MATHGoogle Scholar
  6. 6.
    Léandre, R.: In: Calogero, F., Françoise, J.P., Marrero, J.C., Manojlovic, N., Nunes da Costa, J. (eds.) Geometric Aspects of Integrable Systems. S.I.G.M.A. 3, 027 (2007)Google Scholar
  7. 7.
    Léandre, R.: In: Scheutzow, M., Morters, P., Blath, J. (eds.) Trends in Stochastic Analysis (Festchrift in honour of H.v. Weizsaecker), pp. 283–303. L.M.S Lecture Note Series 353., Cambridge University Press, Cambridge (2009)Google Scholar
  8. 8.
    Léandre, R.: In: Gomez-Ullate, D., Hone, A., Lombardo, S., Puig i Sadurni, J. (eds.) NEEDS 2007”. J. Nonlinear Math. Phys. 15, 251–263 (2008)Google Scholar
  9. 9.
    Léandre, R.: In: Cattaneo, A., Dito, G., Kontsevich, M., Sternheimer, D. (eds.) Special issue on deformation quantization. S.I.G.M.A. 4, 066 (2008)Google Scholar
  10. 10.
    Léandre, R.: In: Shu-Kun Lin (ed.) Feature papers: symmetry concepts and applications. Symmetry 1, 55–63 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Léandre, R.: A Poisson structure in white-noise analysis. In: Kielanowski, P., Ali, S.T., Odzijewicz, A., Schlichenmaier, M., Voronov. Th. (eds.) A.I.P. Proceedings XXVIII workshop of geometrical method in physics, vol. 1191, pp. 123–127. A.I.P., Melville (2009)Google Scholar
  12. 12.
    Léandre, R.: In: Goldin, G., Kerner, R., Hounkonnou, M.N., Sinha, K. (eds.) Nonlinear and noncommutative mathematics: new developments and applications in quantum physics. Adv. Math. Phys. 146719 (2010)Google Scholar
  13. 13.
    Léandre, R.: In: Burdit, C., Navratil, O., Posta, S., Schnabl, M., Snobl, C. (eds.) Quantum theory and symmetrics 7, J. Phys. Conf. Ser. 343, 012066 (2012)Google Scholar
  14. 14.
    Léandre, R., Obame Nguema, B.: S.I.G.M.A. 8, 011 (2012)Google Scholar
  15. 15.
    Maeda, Y.: Sugaku Expostions 16, 224–255 (1991)Google Scholar
  16. 16.
    Semenov-Tyan-Shanskii, M.A.: Funct. Ana. Appl. 17, 17–33 (1983)MathSciNetGoogle Scholar
  17. 17.
    Weinstein, A.: In: Séminaire Bourbaki, Astérisque, vol. 227, pp. 389–409. S.M.F., Paris (1994)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité de Franche ComtéBesançonFrance

Personalised recommendations