Skip to main content

Some Remarks on Weierstrass Sections, Adapted Pairs and Polynomiality

  • Conference paper
  • First Online:
Book cover Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

Let A be a polynomial subalgebra of the algebra of regular functions on affine n-space k n. A Weierstrass section for A is a translate x + Y of a linear subspace of k n such that the restriction of A to x + Y induces an isomorphism of A onto the algebra R[x + Y ] of regular functions on x + Y. They arise notably in describing algebras of invariants both for reductive and non-reductive actions as well as in describing maximal Poisson commutative subalgebras of R[k n] in the case that the latter has a Poisson bracket structure. A Weierstrass section need not always exist and in any case can be very difficult to construct. A review of some known results and open problems is presented in an entirely elementary fashion.

Work supported in part by Israel Science Foundation Grant, no. 710724.

AMS Classification: 17B35

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For nineteenth century mathematicians constucting invariants was a popular exercise. The modern mathematician would no doubt prefer to use the Weyl character formula which can be adjusted to compute the character of a given symmetric power of \(V\) and then to show it has a non-zero scalar product with the trivial character. Despite good intentions the author was too lazy to illustrate the recovery of the required invariants by these means.

References

  1. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves (unpublished). Available from 2003 as http://www.ma.utexas.edu/~benzvi/BD

  2. Bolsinov, A.V.: Commutative families of functions related to consistent Poisson brackets. Acta Appl. Math. 24(3), 253–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, J., Brundan, J.: Elementary invariants for centralizers of nilpotent matrices. J. Aust. Math. Soc. 86(1), 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chervov, A., Falqui, G., Rybnikov, L.: Limits of Gaudin algebras, quantization of bending flows, Jucys-Murphy elements and Gelfand-Tsetlin bases. Lett. Math. Phys. 91(2), 129–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dixmier, J.: Sur les algèbres enveloppantes de \(\mathfrak{s}\mathfrak{l}(n, \mathbb{C})\) et \(\mathfrak{a}\mathfrak{f}(n, \mathbb{C})\). Bull. Sci. Math. (2) 100(1), 57–95 (1976)

    Google Scholar 

  6. Dixmier, J.: Algèbres enveloppantes (French) [Enveloping algebras] Reprint of the 1974 original. Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris (1996)

    Google Scholar 

  7. Fauquant-Millet, F., Joseph, A.: Semi-centre de l’algèbre enveloppante d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple. Ann. Sci. École Norm. Sup. (4) 38(2), 155–191 (2005)

    Google Scholar 

  8. Fauquant-Millet, F., Joseph, A.: La somme des faux degrés—un mystère en théorie des invariants (French) [The sum of the false degrees - a mystery in the theory of invariants]. Adv. Math. 217(4), 1476–1520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fauquant-Millet, F., Joseph, A.: Slices for biparabolics of index 1. Transform. Groups 16(4), 1081–1113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe ansatz and critical level. Comm. Math. Phys. 166(1), 27–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Joseph, A.: A preparation theorem for the prime spectrum of a semisimple Lie algebra. J. Algebra 48(2), 241–289 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joseph, A.: Second commutant theorems in enveloping algebras. Am. J. Math. 99(6), 1167–1192 (1977)

    Article  MATH  Google Scholar 

  14. Joseph, A.: A slice theorem for truncated parabolics of index one and the Bezout equation. Bull. Sci. Math. 131(3), 276–290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joseph, A.: On semi-invariants and index for biparabolic (seaweed) algebras II. J. Algebra 312(1), 158–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Joseph, A.: Parabolic actions in type A and their eigenslices. Transform. Groups 12(3), 515–547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joseph, A.: Compatible adapted pairs and a common slice theorem for some centralizers. Transform. Groups 13(3–4), 637–669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joseph, A.: Slices for biparabolic coadjoint actions in type A. J. Algebra 319(12), 5060–5100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joseph, A.: An Algebraic Slice in the Coadjoint Space of the Borel and the Coxeter Element. Adv. Math. 227, 522–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joseph, A., Lamprou, P.: Maximal Poisson commutative subalgebras for truncated parabolic subalgebras of maximal index in \(\mathfrak{s}\mathfrak{l}(n)\). Transform. Groups 12(3), 549–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joseph, A., Shafrir, D.: Polynomiality of invariants, unimodularity and adapted pairs. Transform. Groups 15(4), 851–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension. Research Notes in Mathematics, vol. 116. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  24. Mishchenko, A.S., Fomenko, A.T.: Euler equation on finite-dimensional Lie groups. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 42(2), 396–415, 471 (1978)

    Google Scholar 

  25. Ooms, A., Van den Bergh, M.: A degree inequality for Lie algebras with a regular Poisson semi-center. J. Algebra 323(2), 305–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Panyushev, D., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313(1), 343–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Panyushev, D.I., Yakimova, O.S.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15(2), 239–249 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Panyushev, D.I., Yakimova, O.S.: A remarkable contraction of semisimple Lie algebras. arXiv:1107.0702

    Google Scholar 

  29. Popov, V.L.: Sections in invariant theory. In: The Sophus Lie Memorial Conference, Oslo, 1992, pp. 315–361. Scandinavian University Press, Oslo (1994)

    Google Scholar 

  30. Popov, V.L.: Some subgroups of the Cremona groups. arXiv:1110.2410

    Google Scholar 

  31. Popov, V.L., Vinberg, E.B.: Invariant Theory. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry IV. Encyclopaedia of Mathematical Sciences, vol. 55. Springer, Berlin (1994)

    Google Scholar 

  32. Rosenlicht, M.: Another proof of a theorem on rational cross sections. Pac. J. Math. 20, 129–133 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sadètov, S.T.: A proof of the Mishchenko-Fomenko conjecture (1981). (Russian) Dokl. Akad. Nauk 397(6), 751–754 (2004)

    Google Scholar 

  34. Tarasov, A.A.: The maximality of some commutative subalgebras in Poisson algebras of semisimple Lie algebras. (Russian) Uspekhi Mat. Nauk 575(347), 165–166 (2002); translation in Russian Math. Surv. 57(5), 1013–1014 (2002)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Vladimir Dobrev for the kind invitation to speak at the 9-th International Workshop “Lie Theory and Its Applications in Physics” held during 20–26 June 2011 in Varna, Bulgaria. I would also like to thank my former student Anna Melnikov who served as an advisor in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Joseph, A. (2013). Some Remarks on Weierstrass Sections, Adapted Pairs and Polynomiality. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_4

Download citation

Publish with us

Policies and ethics