Differential Invariants of Second-Order Ordinary Differential Equations

  • M. Eugenia Rosado María
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


The notion of a differential invariant for systems of second-order differential equations σ on a manifold M with respect to the group of vertical automorphisms of the projection p: ℝ ×M → ℝ, is defined and the Chern connection ∇ σ attached to a SODE σ allows one to determine a basis for second-order differential invariants of a SODE.


Vector Bundle Curvature Mapping Tensor Field Linear Connection Order Ordinary Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by Ministerio of Ciencia e Innovación of Spain (MICINN), under grant #MTM2008–01386.


  1. 1.
    Byrnes, G.B.: A complete set of Bianchi identities for tensor fields along the tangent bundle projection. J. Phys. A Math. Gen. 27, 6617–6632 (1994)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chern, S.-S.: Sur la géométrie d’un système d’équations différentielles du second ordre. Bull. Sci. Math. 63, 206–212 (1939)MathSciNetMATHGoogle Scholar
  3. 3.
    Crampin, M., Martínez, E., Sarlet, W.: Linear connections for systems of second-order ordinary differential equations. Ann. Inst. H. Poincaré Phys. Théor. 65(2), 223–249 (1996)MATHGoogle Scholar
  4. 4.
    Kosambi, D.D.: Systems of differential equations of the second order. Quart. J. Math. Oxford 6, 1–12 (1935)CrossRefGoogle Scholar
  5. 5.
    Kumpera, A.: Invariants différentiels d’un pseudogroupe de Lie. I, II. J. Diff. Geom. 10, 289–345, 347–416 (1975)Google Scholar
  6. 6.
    Massa, E., Pagani, E.: Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics. Ann. Inst. H. Poincaré Phys. Théor. 61(1), 17–62 (1994)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaEscuela Técnica Superior de Arquitectura, UPMMadridSpain

Personalised recommendations