Hilbert Space Decomposition for Coulomb Blockade in Fabry–Pérot Interferometers

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


We show how to construct the thermodynamic grand potential of a droplet of incompressible fractional quantum Hall liquid, formed inside of an electronic Fabry–Pérot interferometer, in terms of the conformal field theory disk partition function for the edge states in presence of Aharonov–Bohm flux. To this end we analyze in detail the algebraic structure of the edge states’ Hilbert space and identify the effect of the variation of the flux. This allows us to compute, in the linear response approximation, all thermodynamic properties of the conductance in the regime when the Coulomb blockade is softly lifted by the change of the magnetic flux due to the weak coupling between the droplet and the two quantum point contacts.


Partition Function Filling Factor Operator Product Expansion Topological Charge Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Andrea Cappelli, Guillermo Zemba, Ady Stern, Pasquale Sodano and Reinhold Egger for many useful discussions as well as INFN-Firenze and the Galileo Galilei Institute for Theoretical Physics for hospitality and support. The author has been supported as a Research Fellow by the Alexander von Humboldt Foundation as well as by ESF and by the Bulgarian NSF grant DO 02-257.


  1. 1.
    Ji, Y., Chung, Y., Sprinzak, D., Heiblum, M., Mahalu, D., Shtrikman, H.: An electronic Mach–Zehnder interferometer. Nature 422, 415 (2003)CrossRefGoogle Scholar
  2. 2.
    Wen, X.-G.: Topological orders in rigid states. Int. J. Mod. Phys. B4, 239 (1990)Google Scholar
  3. 3.
    Froehlich, J., Zee, A.: Large scale physics of the quantum Hall fluid. Nucl. Phys. B 364, 517 (1990)CrossRefGoogle Scholar
  4. 4.
    Cappelli, A., Trugenberger, C.A., Zemba, G.R.: Infinite symmetry in the quantum Hall effect. Nucl. Phys. B396, 465 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Georgiev, L.S.: Thermal broadening of the Coulomb blockade peaks in quantum Hall interferometers. EPL 91, 41001 (2010). http://xxx.lanl.gov/abs/arXiv:1003.4871
  6. 6.
    Stern, A., Halperin, B.I.: Proposed experiments to probe the non-abelian ν = 5 ∕ 2 quantum Hall state. Phys. Rev. Lett. 94, 016802 (2006). http://xxx.lanl.gov/abs/cond-mat/0508447 Google Scholar
  7. 7.
    Ilan, R., Grosfeld, E., Stern, A.: Coulomb blockade as a probe for non-Abelian statistics in Read–Rezayi states. Phys. Rev. Lett. 100, 086803 (2008). http://xxx.lanl.gov/abs/arXiv:0705.2187 Google Scholar
  8. 8.
    Cappelli, A., Georgiev, L.S., Zemba, G.R.: Coulomb blockade in hierarchical quantum Hall droplets. J. Phys. A Math. Theor. 42, 222001 (2009). http://xxx.lanl.gov/abs/arXiv:0902.1445 Google Scholar
  9. 9.
    Bonderson, P., Nayak, C., Shtengel, K.: Coulomb blockade doppelgangers in quantum Hall states. Phys. Rev. B 81, 165308 (2010). http://xxx.lanl.gov/abs/arXiv:0909.1056
  10. 10.
    Cappelli, A., Viola, G., Zemba, G.R.: Chiral partition functions of quantum Hall droplets. Ann. Phys. 325, 465 (2010). http://xxx.lanl.gov/abs/atXiv:0909.3588 Google Scholar
  11. 11.
    Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  12. 12.
    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, New York (1997)MATHCrossRefGoogle Scholar
  13. 13.
    Georgiev, L.S.: A universal conformal field theory approach to the chiral persistent currents in the mesoscopic fractional quantum Hall states. Nucl. Phys. B 707, 347–380 (2005). http://xxx.lanl.gov/abs/hep-th/0408052
  14. 14.
    Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)CrossRefGoogle Scholar
  15. 15.
    Furlan, P., Sotkov, G., Todorov, I.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cim. 12(6), 1 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cappelli, A., Zemba, G.R.: Modular invariant partition functions in the quantum Hall effect. Nucl. Phys. B490, 595 (1997). http://xxx.lanl.gov/abs/hep-th/9605127
  17. 17.
    Read, N., Rezayi, E.: Beyond paired quantum hall states: Parafermions and incompressible states in the first excited landau level. Phys. Rev. B59, 8084 (1998)Google Scholar
  18. 18.
    Cappelli, A., Georgiev, L.S., Todorov, I.T.: Parafermion Hall states from coset projections of Abelian conformal theories. Nucl. Phys. B 599 [FS], 499–530 (2001). http://xxx.lanl.gov/abs/hep-th/0009229
  19. 19.
    Fateev, V., Zamolodchikov, A.: Conformal quantum field theory models in two dimensions having Z 3 symmetry. Nucl. Phys. B280, 644 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations