The Ruijsenaars Self-Duality Map as a Mapping Class Symplectomorphism

  • L. Fehér
  • C. Klimčík
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


This is a brief review of the main results of our paper [Nucl. Phys. B 860, 464–515 (2012)] that contains a complete global treatment of the compactified trigonometric Ruijsenaars–Schneider system by quasi-Hamiltonian reduction. Confirming previous conjectures of Gorsky and collaborators, we have rigorously established the interpretation of the system in terms of flat SU(n) connections on the one-holed torus and demonstrated that its self-duality symplectomorphism represents the natural action of the standard mapping class generator S on the phase space. The pertinent quasi-Hamiltonian reduced phase space turned out to be symplectomorphic to the complex projective space equipped with a multiple of the Fubini-Study symplectic form and two toric moment maps playing the roles of particle-positions and action-variables that are exchanged by the duality map. Open problems and possible directions for future work are also discussed.


Poisson Bracket Symplectic Manifold Mapping Class Group Reduce Phase Space Flat Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank the organizers, V. Dobrev in particular, for the pleasant atmosphere that we enjoyed at the LT-9 workshop in Varna. This work was supported in part by the Hungarian Scientific Research Fund (OTKA) under the grant K 77400.


  1. 1.
    Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Diff. Geom. 48, 445–495 (1998). arXiv:dg-ga/9707021Google Scholar
  2. 2.
    Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)MATHCrossRefGoogle Scholar
  3. 3.
    Fehér, L., Klimčík, C.: Poisson-Lie interpretation of trigonometric Ruijsenaars duality. Commun. Math. Phys. 301, 55–104 (2011). arXiv:0906.4198 [math-ph]Google Scholar
  4. 4.
    Fehér, L., Klimčík, C.: Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860, 464–515 (2012). arXiv:1101.1795 [math-ph]Google Scholar
  5. 5.
    Fehér, L., Klimčík, C.: On the spectra of the quantized action variables of the compactified Ruijsenaars–Schneider system. Theor. Math. Phys. 171, 704–714 (2012). arXiv:1203.2864 [math-ph]Google Scholar
  6. 6.
    Fock, V., Gorsky, A., Nekrasov, N., Rubtsov, V.: Duality in integrable systems and gauge theories. JHEP 0007, 028 (2000). arXiv:hep-th/9906235Google Scholar
  7. 7.
    Goldman, W.: The modular group action on real SL(2)-characters of a one-holed torus. Geom. Topology 7, 443–486 (2003). arXiv:math/0305096Google Scholar
  8. 8.
    Gorsky, A., Nekrasov, N.: Relativistic Calogero-Moser model as gauged WZW theory. Nucl. Phys. B 436, 582–608 (1995). arXiv:hep-th/9401017Google Scholar
  9. 9.
    Huebschmann, J.: Poisson geometry of certain moduli spaces. Red. Circ. Mat. Palermo II Suppl. 39, 15–35 (1996); and references thereinGoogle Scholar
  10. 10.
    Pusztai, B.G.: The hyperbolic BC(n) Sutherland and the rational BC(n) Ruijsenaars–Schneider–van Diejen models: Lax matrices and duality. Nucl. Phys. B 856, 528–551 (2012) arXiiv:1109.0446[math-ph]Google Scholar
  11. 11.
    Reshetikhin, N.: Degenerate Integrability of spin Calogero-Moser systems and the duality with the spin Ruijsenaars systems. Lett. Math. Phys. 63, 55–71 (2003). arXiv:math/0202245Google Scholar
  12. 12.
    Ruijsenaars, S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems I. The pure soliton case. Commun. Math. Phys. 115, 127–165 (1988)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ruijsenaars, S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems III. Sutherland type systems and their duals. Publ. RIMS 31, 247–353 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Ruijsenaars, S.N.M.: Systems of Calogero-Moser type. In: Proceedings of the 1994 CRM–Banff Summer School ‘Particles and Fields’, pp. 251–352. Springer, New York (1999)Google Scholar
  15. 15.
    van Diejen, J.F., Vinet, L.: The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model. Commun. Math. Phys. 197, 33–74 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsBudapestHungary
  2. 2.Department of Theoretical PhysicsUniversity of SzegedSzegedHungary
  3. 3.Institut de mathématiques de LuminyMarseilleFrance

Personalised recommendations