Advertisement

Palev Statistics and the Chronon

  • David Ritz Finkelstein
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)

Abstract

A finite relativistic quantum space-time is constructed. Its unit element is a spin pair with Palev statistics associated with an orthogonal group.

Keywords

Gauge Group Probability Vector Clifford Algebra Spinor Space Singular Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

To Roger Penrose and Richard Feynman for kindly showing me their seminal spin quantizations of space and space-time before publication.

To O. B. Bassler, James Baugh, Walter L. Bloom, Jr., Dustin Burns, David Edwards, Shlomit Ritz Finkelstein, Andrei Galiautdinov, Dennis Marks, Zbigniew Oziewicz, Tchavdar Dimitrov Palev, Heinrich Saller, Stephen Selesnick, Abraham Sternlieb, Sarang Shah, and Frank (Tony) Smith, for helpful and enjoyable discussions.

To Lynn Margulis for introducing me to post-Darwinian symbiogenetic evolution in her Lindisfarne lectures.

To Cecylia Arszewski for leading me to Unger’s most helpful radical pragmatism.

To Prof. V. K. Dobrev for inviting me to this retreat of the Bulgarian Academy of Science.

References

  1. 1.
    Bopp, F., Haag, R.: Über die Möglichkeit von Spinmodellen. Zeitschrift für Naturforschung 5a, 644 (1950)Google Scholar
  2. 2.
    Dirac, P.A.M.: Spinors in Hilbert Space. Plenum, New York (1974)CrossRefGoogle Scholar
  3. 3.
    Finkelstein, D.: Quantum Relativity. Springer, Heidelberg (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Haldane, F.D.M.: “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. 39, 510–525 (1952)CrossRefGoogle Scholar
  6. 6.
    Palev, T.D.: Lie algebraical aspects of the quantum statistics. Unitary quantization (A-quantization). Joint Institute for Nuclear Research Preprint JINR E17-10550, Dubna (1977). hep-th/9705032Google Scholar
  7. 7.
    Palev, T.D., Van der Jeugt, J.: Jacobson generators, Fock representations and statistics of sl(n + 1). J. Math. Phys. 43, 3850–3873 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Penrose, R.: Angular momentum: An approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond, pp. 151–180. Cambridge University Press, Cambridge (1971). Penrose kindly shared much of this seminal work with me ca. 1960Google Scholar
  9. 9.
    Saller, H.: Operational Quantum Theory I. Nonrelativistic Structures. Springer, New York (2006)MATHGoogle Scholar
  10. 10.
    Schur, I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. Journal für die reine und angewandte Mathematik 139:155–250 (1911)MATHGoogle Scholar
  11. 11.
    Segal, I.E.: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951) Especially Sect. 6AGoogle Scholar
  12. 12.
    Unger, R.M.: The Self Awakened: Pragmatism Unbound. Harvard University Press, Cambridge (2007)Google Scholar
  13. 13.
    Yang, C.N.: On quantized space-time. Phys. Rev. 72, 874 (1947)MATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations