Advertisement

Non-Local Space-Time Transformations Generated from the Ageing Algebra

  • Stoimen Stoimenov
  • Malte Henkel
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)

Abstract

The ageing algebra is a local dynamical symmetry of many ageing systems, far from equilibrium, and with a dynamical exponent z = 2. Here, new representations for an integer dynamical exponent z = n are constructed, which act non-locally on the physical scaling operators. The new mathematical mechanism which makes the infinitesimal generators of the ageing algebra dynamical symmetries, is explicitly discussed for a n-dependent family of linear equations of motion for the order-parameter. Finite transformations are derived through the exponentiation of the infinitesimal generators and it is proposed to interpret them in terms of the transformation of distributions of spatio-temporal coordinates. The two-point functions which transform co-variantly under the new representations are computed, which quite distinct forms for n even and n odd. Depending on the sign of the dimensionful mass parameter, the two-point scaling functions either decay monotonously or in an oscillatory way towards zero.

Keywords

Scaling Function Infinitesimal Generator Dynamical Symmetry Dynamical Exponent Finite Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Most of the work on this paper was done during the visits of S.S. at the Université Henri Poincaré Nancy I. S.S. is supported in part by the Bulgarian NSF grant DO 02-257.

References

  1. 1.
    Bagchi, A., Gopakumar, R.: J. High Energ Phys. 0907, 307 (2009)MathSciNetGoogle Scholar
  2. 2.
    Balasubramanian, K., McGrevy, J.: Phys. Rev. Lett. 101, 061601 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bargman, V.: Ann. Math. 56, 1 (1954)CrossRefGoogle Scholar
  4. 4.
    Baumann, F., Stoimenov, S., Henkel, M.: J. Phys. A39, 4095 (2006)MathSciNetGoogle Scholar
  5. 5.
    Baumann, F., Henkel, M.: J. Stat. Mech. P01012 (2007)Google Scholar
  6. 6.
    Baumann, F., Dutta, S.B., Henkel, M.: J. Phys. A Math. Gen. 40, 7389 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bray, A.J.: Adv. Phys. 43, 357 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cannas, S.A., Stariolo, D.A., Tamarit, F.A.: Physica A294, 362 (2001)Google Scholar
  9. 9.
    Cugliandolo, L.F.: In: Barrat, J.-L., Dalibard, J., Kurchan, J., Feigel’man, M.V. (eds.) Slow relaxation and non equilibrium dynamics in condensed matter, Les Houches Session 77 July 2002. Springer, Heidelberg (2003) (cond-mat/0210312)Google Scholar
  10. 10.
    Durang, X., Henkel, M.: J. Phys. A Math. Theor. 42, 395004 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duval, C., Horváthy, P.A.: J. Phys. A Math. Theor. 42, 465206 (2009)CrossRefGoogle Scholar
  12. 12.
    Godrèche, C., Luck, J.M.: J. Phys. A. Math. Gen. 33, 9141 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Hagen, C.R.: Phys. Rev. D5, 377 (1972); Phys. Lett. A279, 215 (2001)Google Scholar
  14. 14.
    Havas, P., Plebanski, J.: J. Math. Phys. 19, 482 (1978)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Henkel, M.: J. Stat. Phys. 75, 1023 (1994)MATHCrossRefGoogle Scholar
  16. 16.
    Henkel, M.: Phys. Rev. Lett. 78, 1940 (1997)CrossRefGoogle Scholar
  17. 17.
    Henkel, M.: Nucl. Phys. B641, 405 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Henkel, M., Unterberger, J.: Nucl. Phys. B660, 407 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Henkel, M., Enss, T., Pleimling, M.: J. Phys. A Math. Gen. 39, L589 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Henkel, M., Schott, R., Stoimenov, S., Unterberger, J.: On the dynamical symmetry algebra of ageing: Lie structure, representations and Appell systems, to appear in Confluents Mathematici 2013, preprint math-ph/0601028.Google Scholar
  21. 21.
    Henkel, M., Pleimling, M.: Non-equilibrium Phase Transitions, vol. 2: Ageing and Dynamical Scaling Far from Equilibrium. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Jackiw, R.: Phys. Today 25, 23 (1972)CrossRefGoogle Scholar
  23. 23.
    Jottar, J.I., Leigh, R.G., Minic, D., Pando Zayas, L.A.: J. High-energy Phys. 1011:034 (2010), preprint arxiv:1004.3752 Google Scholar
  24. 24.
    Kastrup, H.A.: Nucl. Phys. B7, 545 (1968)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Minic, D., Pleimling, M.: Phys. Rev. E78, 061108 (2008)Google Scholar
  26. 26.
    Niederer, U.: Helv. Phys. Acta 45, 802 (1972)MathSciNetGoogle Scholar
  27. 27.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)MATHGoogle Scholar
  28. 28.
    Picone, A., Henkel, M.: Nucl. Phys. B688 217 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Röthlein, A., Baumann, F., Pleimling, M.: Phys. Rev. E 74, 061604 (2006)CrossRefGoogle Scholar
  30. 30.
    Stoimenov, S., Henkel, M.: Nucl. Phys, B847, 612–627 (2011)MathSciNetGoogle Scholar
  31. 31.
    Wright, E.M.: J. Lond. Math. Soc. 10, 287 (1935); Proc. Lond. Math. Soc. 46, 389 (1940); erratum J. Lond. Math. Soc. 27, 256 (1952)Google Scholar
  32. 32.
    Zinn-Justin, J.: Quantum Field-Theory and Critical Phenomena, 4th edn. Oxford University Press, Oxford (2002)CrossRefGoogle Scholar
  33. 33.
    Zhang, P.-M., Horváthy, P.A.: Eur. Phys. J. C65, 607 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Groupe de Physique Statistique, Département de Physique de la Matière et des Matériaux, Institut Jean LamourNancy UniversitéVandœuvre lès Nancy CedexFrance

Personalised recommendations