Skip to main content

W-Algebras Extending \(\widehat{\mathfrak{g}\mathfrak{l}}(1\vert 1)\)

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

We have recently shown that \(\widehat{\mathfrak{g}\mathfrak{l}}\left (1\vert 1\right )\) admits an infinite family of simple current extensions. Here, we review these findings and add explicit free field realizations of the extended algebras. We use them for the computation of leading contributions of the operator product algebra. Amongst others, we find extensions that contain the Feigin–Semikhatov W N (2) algebra at levels k = N(3 − N) ∕ (N − 2) and k = − N + 1 + N − 1 as subalgebras.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We mention that the typical irreducibles are also projective in the category of finite-dimensional \(\mathfrak{g}\mathfrak{l}\left (1\vert 1\right )\)-modules.

  2. 2.

    It is perhaps also worth pointing out that the adjoint representation of \(\mathfrak{g}\mathfrak{l}\left (1\vert 1\right )\) is isomorphic to \({ \mathcal{P}}_{0}\).

  3. 3.

    More precisely, \(\widehat{{ \mathcal{P}}}_{n,0}\) is the affine counterpart to \({ \mathcal{P}}_{n}\) and the remaining \(\widehat{{ \mathcal{P}}}_{n,\ell }\) are obtained by spectral flow.

  4. 4.

    Here, H and Z should be associated with the matrices diag {1, − 1, 0} and diag {1, 1, 2} in the defining representation of \(\mathfrak{s}\mathfrak{l}\left (2\vert 1\right )\).

  5. 5.

    There is a third solution, Δ n,   +  + 1 = 0, but this is invalid as we require , Δ n,   > 0.

  6. 6.

    Taking n = −½( + 1) also satisfies these requirements, but then 2nℓ is necessarily even. Moreover, there is again a solution of the form Δ n,   −  + 1 = 0, but it is easy to check that it leads to the wrong operator product expansion of \({ \mathcal{T}}_{N}\) with itself.

References

  1. Creutzig, T., Ridout, D.: Relating the Archetypes of Logarithmic Conformal Field Theory. (arXiv:1107.2135 [hep-th])

    Google Scholar 

  2. Rozansky, L., Saleur, H.: Quantum field theory for the multivariable Alexander-Conway polynomial. Nucl. Phys. B376, 461–509 (1992)

    Article  MathSciNet  Google Scholar 

  3. Rozansky, L., Saleur, H.: S and T matrices for the super U(1, 1) WZW model: application to surgery and three manifolds invariants based on the Alexander-Conway polynomial. Nucl. Phys. B389, 365–423 (1993) (arXiv:hep-th/9203069)

    Article  MathSciNet  Google Scholar 

  4. Saleur, H., Schomerus, V.: The GL1∣1 WZW model: from supergeometry to logarithmic CFT. Nucl. Phys. B734, 221–245 (2006) (arXiv:hep-th/0510032)

    MathSciNet  Google Scholar 

  5. Creutzig, T., Quella, T., Schomerus, V.: Branes in the GL1 | 1 WZNW-Model. Nucl. Phys. B792, 257–283 (2008) (arXiv:0708.0583 [hep-th])

    Google Scholar 

  6. Creutzig, T., Schomerus, V.: Boundary correlators in supergroup WZNW models. Nucl. Phys. B807, 471–494 (2009) (arXiv:0804.3469 [hep-th])

    Google Scholar 

  7. Creutzig, T.: Branes in Supergroups. Ph.D. thesis, DESY Theory Group, 2009 (arXiv:0908.1816 [hep-th])

    Google Scholar 

  8. Creutzig, T., Rønne, P.: From world-sheet supersymmetry to super target spaces. J. High Energy Phys. 1011, 021 (2010) (arXiv:1006.5874 [hep-th])

    Google Scholar 

  9. Ridout, D.: \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )_{-1/2}\) and the Triplet Model. Nucl. Phys. B835, 314–342 (2010) (arXiv:1001.3960 [hep-th])

    Google Scholar 

  10. Ridout, D.: \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )_{-1/2}\): a Case Study. Nucl. Phys. B814, 485–521 (2009) (arXiv:0810.3532 [hep-th])

    Google Scholar 

  11. Ridout, D.: Fusion in fractional level \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )\)-theories with \( k=-\frac{1}{2}\). Nucl. Phys. B848, 216–250 (2011) (arXiv:1012.2905 [hep-th])

    Google Scholar 

  12. Gaberdiel, M., Kausch, H.: A rational logarithmic conformal field theory. Phys. Lett. B386, 131–137 (1996) (arXiv:hep-th/9606050)

    MathSciNet  Google Scholar 

  13. Kausch, H.: Symplectic fermions. Nucl. Phys. B583, 513–541 (2000) (arXiv:hep-th/0003029)

    Article  MathSciNet  Google Scholar 

  14. Mathieu, P., Ridout, D.: The extended algebra of the SU(2) Wess-Zumino-Witten models. Nucl. Phys. B765, 201–239 (2007) (arXiv:hep-th/0609226)

    Article  MathSciNet  Google Scholar 

  15. Mathieu, P., Ridout, D.: The extended algebra of the minimal models. Nucl. Phys. B776, 365–404 (2007) (arXiv:hep-th/0701250)

    Article  MathSciNet  Google Scholar 

  16. Guruswamy, S., LeClair, A., Ludwig, A.: gl(N | N) super current algebras for disordered Dirac fermions in two-dimensions. Nucl. Phys. B583, 475–512 (2000) (arXiv:cond-mat/9909143)

    Google Scholar 

  17. Feigin, B., Semikhatov, A.: W n (2) algebras. Nucl. Phys. B698, 409–449 (2004) (arXiv:math/0401164)

    Article  MathSciNet  Google Scholar 

  18. Kytölä, K., Ridout, D.: On staggered indecomposable Virasoro modules. J. Math. Phys. 50, 123503 (2009) (arXiv:0905.0108 [math-ph])

    Google Scholar 

  19. Gotz, G., Quella, T., Schomerus, V.: Representation theory of \(\mathfrak{s}\mathfrak{l}\left (2\vert 1\right )\). J. Algebra 312, 829–848 (2007) (arXiv:hep-th/0504234)

    Article  MathSciNet  Google Scholar 

  20. Nahm, W.: Quasirational fusion products. Int. J. Mod. Phys. B8, 3693–3702 (1994) (arXiv:hep-th/9402039)

    MathSciNet  Google Scholar 

  21. Gaberdiel, M., Kausch, H.: Indecomposable fusion products. Nucl. Phys. B477, 293–318 (1996) (arXiv:hep-th/9604026)

    Article  MathSciNet  Google Scholar 

  22. Quella, T., Schomerus, V.: Free fermion resolution of supergroup WZNW models. J. High Energy Phys. 0709, 085 (2007) (arXiv:0706.0744 [hep-th])

    Google Scholar 

  23. Creutzig, T., Rønne, P: The GL(1 | 1)-symplectic fermion correspondence. Nucl. Phys. B815, 95–124 (2009) (arXiv:0812.2835 [hep-th])

    Google Scholar 

  24. Polyakov, A.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A5, 833–842 (1990)

    MathSciNet  Google Scholar 

  25. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139, 71–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Creutzig, T., Gao, P., Linshaw, A.: A commutant realization of W n (2) at critical level. Int. Math. Res. Not. (arXiv:1109.4065[math]) doi:10.1093/imrn/rns229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Creutzig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Creutzig, T., Ridout, D. (2013). W-Algebras Extending \(\widehat{\mathfrak{g}\mathfrak{l}}(1\vert 1)\) . In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_24

Download citation

Publish with us

Policies and ethics