W-Algebras Extending \(\widehat{\mathfrak{g}\mathfrak{l}}(1\vert 1)\)

  • Thomas Creutzig
  • David Ridout
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


We have recently shown that \(\widehat{\mathfrak{g}\mathfrak{l}}\left (1\vert 1\right )\) admits an infinite family of simple current extensions. Here, we review these findings and add explicit free field realizations of the extended algebras. We use them for the computation of leading contributions of the operator product algebra. Amongst others, we find extensions that contain the Feigin–Semikhatov W N (2) algebra at levels k = N(3 − N) ∕ (N − 2) and k = − N + 1 + N − 1 as subalgebras.


Central Charge Operator Product Expansion Conformal Dimension Conformal Field Theory Fusion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Creutzig, T., Ridout, D.: Relating the Archetypes of Logarithmic Conformal Field Theory. (arXiv:1107.2135 [hep-th])Google Scholar
  2. 2.
    Rozansky, L., Saleur, H.: Quantum field theory for the multivariable Alexander-Conway polynomial. Nucl. Phys. B376, 461–509 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rozansky, L., Saleur, H.: S and T matrices for the super U(1, 1) WZW model: application to surgery and three manifolds invariants based on the Alexander-Conway polynomial. Nucl. Phys. B389, 365–423 (1993) (arXiv:hep-th/9203069)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Saleur, H., Schomerus, V.: The GL1∣1 WZW model: from supergeometry to logarithmic CFT. Nucl. Phys. B734, 221–245 (2006) (arXiv:hep-th/0510032)MathSciNetGoogle Scholar
  5. 5.
    Creutzig, T., Quella, T., Schomerus, V.: Branes in the GL1 | 1 WZNW-Model. Nucl. Phys. B792, 257–283 (2008) (arXiv:0708.0583 [hep-th])Google Scholar
  6. 6.
    Creutzig, T., Schomerus, V.: Boundary correlators in supergroup WZNW models. Nucl. Phys. B807, 471–494 (2009) (arXiv:0804.3469 [hep-th])Google Scholar
  7. 7.
    Creutzig, T.: Branes in Supergroups. Ph.D. thesis, DESY Theory Group, 2009 (arXiv:0908.1816 [hep-th])Google Scholar
  8. 8.
    Creutzig, T., Rønne, P.: From world-sheet supersymmetry to super target spaces. J. High Energy Phys. 1011, 021 (2010) (arXiv:1006.5874 [hep-th])Google Scholar
  9. 9.
    Ridout, D.: \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )_{-1/2}\) and the Triplet Model. Nucl. Phys. B835, 314–342 (2010) (arXiv:1001.3960 [hep-th])Google Scholar
  10. 10.
    Ridout, D.: \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )_{-1/2}\): a Case Study. Nucl. Phys. B814, 485–521 (2009) (arXiv:0810.3532 [hep-th])Google Scholar
  11. 11.
    Ridout, D.: Fusion in fractional level \(\widehat{\mathfrak{s}\mathfrak{l}}\left (2\right )\)-theories with \( k=-\frac{1}{2}\). Nucl. Phys. B848, 216–250 (2011) (arXiv:1012.2905 [hep-th])Google Scholar
  12. 12.
    Gaberdiel, M., Kausch, H.: A rational logarithmic conformal field theory. Phys. Lett. B386, 131–137 (1996) (arXiv:hep-th/9606050)MathSciNetGoogle Scholar
  13. 13.
    Kausch, H.: Symplectic fermions. Nucl. Phys. B583, 513–541 (2000) (arXiv:hep-th/0003029)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mathieu, P., Ridout, D.: The extended algebra of the SU(2) Wess-Zumino-Witten models. Nucl. Phys. B765, 201–239 (2007) (arXiv:hep-th/0609226)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mathieu, P., Ridout, D.: The extended algebra of the minimal models. Nucl. Phys. B776, 365–404 (2007) (arXiv:hep-th/0701250)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guruswamy, S., LeClair, A., Ludwig, A.: gl(N | N) super current algebras for disordered Dirac fermions in two-dimensions. Nucl. Phys. B583, 475–512 (2000) (arXiv:cond-mat/9909143)Google Scholar
  17. 17.
    Feigin, B., Semikhatov, A.: W n (2) algebras. Nucl. Phys. B698, 409–449 (2004) (arXiv:math/0401164)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kytölä, K., Ridout, D.: On staggered indecomposable Virasoro modules. J. Math. Phys. 50, 123503 (2009) (arXiv:0905.0108 [math-ph])Google Scholar
  19. 19.
    Gotz, G., Quella, T., Schomerus, V.: Representation theory of \(\mathfrak{s}\mathfrak{l}\left (2\vert 1\right )\). J. Algebra 312, 829–848 (2007) (arXiv:hep-th/0504234)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nahm, W.: Quasirational fusion products. Int. J. Mod. Phys. B8, 3693–3702 (1994) (arXiv:hep-th/9402039)MathSciNetGoogle Scholar
  21. 21.
    Gaberdiel, M., Kausch, H.: Indecomposable fusion products. Nucl. Phys. B477, 293–318 (1996) (arXiv:hep-th/9604026)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Quella, T., Schomerus, V.: Free fermion resolution of supergroup WZNW models. J. High Energy Phys. 0709, 085 (2007) (arXiv:0706.0744 [hep-th])Google Scholar
  23. 23.
    Creutzig, T., Rønne, P: The GL(1 | 1)-symplectic fermion correspondence. Nucl. Phys. B815, 95–124 (2009) (arXiv:0812.2835 [hep-th])Google Scholar
  24. 24.
    Polyakov, A.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A5, 833–842 (1990)MathSciNetGoogle Scholar
  25. 25.
    Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139, 71–82 (1991)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Creutzig, T., Gao, P., Linshaw, A.: A commutant realization of W n (2) at critical level. Int. Math. Res. Not. (arXiv:1109.4065[math]) doi:10.1093/imrn/rns229Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Theoretical Physics, Research School of Physics and Engineering and Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations