On Quantum WZNW Monodromy Matrix: Factorization, Diagonalization, and Determinant

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


We review the basic algebraic properties of the quantum monodromy matrix M in the canonically quantized chiral SU(n) k Wess–Zumino–Novikov–Witten model with a quantum group symmetry.


Hopf Algebra Quantum Group Exchange Relation Monodromy Matrix Cartan Matrix 



L.H. thanks the organizers of the 9th International Workshop “Lie Theory and Its Applications in Physics” (LT-9), 20–26 June 2011, held in Varna, Bulgaria. The work of L.H. has been supported in part by the Bulgarian National Science Fund (grant DO 02-257) and INFN, Sezione di Trieste. P.F. acknowledges the support of the Italian Ministry of University and Research (MIUR).


  1. 1.
    Alekseev, A., Shatashvili, S.: Comm. Math. Phys. 133, 353–368 (1990)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Balog, J., Fehér, L., Palla, L.: Nucl. Phys. B 568, 503–542 (2000) (hep-th/9910046)MATHCrossRefGoogle Scholar
  3. 3.
    Cartier, P.: A primer of Hopf algebras. IHES Bures-sur-Yvette preprint IHES/M/06/40 (2006), p. 80 (Available at http://inc.web.ihes.fr/prepub/PREPRINTS/2006/M/M-06-40.pdf)
  4. 4.
    Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 798–820, Berkeley, 1986. Academic, New York (1986)Google Scholar
  5. 5.
    Faddeev, L.D.: Comm. Math. Phys. 132, 131–138 (1990)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Algebra I Anal. 1, 178–206 (1989) [English translation: Leningrad Math. J. 1, 193–225 (1990)]Google Scholar
  7. 7.
    Falceto, F., Gawȩdzki, K.: On quantum group symmetries in conformal field theories. In: Talk given at the XXth International Congress on Differential Geometric Methods in Theoretical Physics, New York, 3–7 June 1991 (hep-th/9109023)Google Scholar
  8. 8.
    Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Comm. Math. Phys. 265, 47–93 (2006) (hep-th/0504093)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Furlan, P., Hadjiivanov, L.: Quantum su(n)k monodromy matrices (arXiv:1111.2037[math-ph])Google Scholar
  10. 10.
    Furlan, P., Hadjiivanov, L., Isaev, A.P., Ogievetsky, O.V., Pyatov, P.N., Todorov, I.: J. Phys. A 36, 5497–5530 (2003) (hep-th/0003210)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Furlan, P., Hadjiivanov, L., Todorov, I.: Lett. Math. Phys. 82, 117–151 (2007) (arXiv:0710.1063 [hep-th])Google Scholar
  12. 12.
    Gawȩdzki, K.: Comm. Math. Phys. 139, 201–213 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gepner, D., Witten, E.: Nucl. Phys. B 278, 493–549 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hadjiivanov, L., Popov, T.: Eur. Phys. J. B 29, 183–187 (2002) (hep-th/0109219)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hadjiivanov, L., Isaev, A.P., Ogievetsky, O.V., Pyatov, P.N., Todorov, I.: J. Math. Phys. 40, 427–448 (1999) (q-alg/9712026)Google Scholar
  16. 16.
    Tsuchia, A., Kanie, Y.: Lett. Math. Phys. 13, 303–312 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Witten, E.: Comm. Math. Phys. 92, 455–472 (1984)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Theoretical and Mathematical Physics Division, Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Sezione di TriesteINFNTriesteItaly
  3. 3.Dipartimento di Fisica dell’ Università degli Studi di TriesteTriesteItaly

Personalised recommendations