Skip to main content

Wigner Quantization and Lie Superalgebra Representations

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

T.D. Palev laid the foundations of the investigation of Wigner quantum systems through representation theory of Lie superalgebras. His work has been very influential, in particular on my own research. It is quite remarkable that the study of Wigner quantum systems has had some impact on the development of Lie superalgebra representations. In this review paper, I will present the method of Wigner quantization and give a short overview of systems (Hamiltonians) that have recently been treated in the context of Wigner quantization. Most attention will go to a system for which the quantization conditions naturally lead to representations of the Lie superalgebra \(\mathfrak{o}\mathfrak{s}\mathfrak{p}(1\vert 2n)\). I shall also present some recent work in collaboration with G. Regniers, where generating functions techniques have been used in order to describe the energy and angular momentum contents of 3-dimensional Wigner quantum oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atakishiyev, N.M., Pogosyan, G.S., Vicent, L.E., Wolf, K.B.: Finite two-dimensional oscillator: I. The cartesian model, J. Phys. A 34, 9381–9398 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Atakishiyev, N.M., Pogosyan, G.S., Vicent, L.E., Wolf, K.B.: Finite two-dimensional oscillator: I. The radial model, J. Phys. A 34, 9399–9415 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Atakishiyev, N.M., Pogosyan, G.S., Wolf, K.B.: Finite models of the oscillator, Phys. Part. Nuclei 36, 247–265 (2005)

    Google Scholar 

  4. Blasiak, P., Horzela, A., Kapuscik, E.: Alternative Hamiltonians and Wigner quantization, J. Optic. B 5, S245–S260 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ganchev, A.C., Palev, T.D.: A Lie superalgebraic interpretation of the para-Bose statistics, J. Math. Phys. 21, 797–799 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gaskell, R., Peccia, A., Sharp, R.T.: Generating functions for polynomial irreducible tensors, J. Math. Phys. 19, 727–733 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horzela, A., Kapuscik, E.: On time asymmetric Wigner quantization, Chaos, Solitons and Fractals 12, 2801–2803 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes, J.W.B.: Representations of osp(2,1) and the metaplectic representation, J. Math. Phys. 22, 245–250 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jafarov, E.I., Stoilova, N.I., Van der Jeugt, J.: Finite oscillator models: the Hahn oscillator, J. Phys. A: Math. Theor. 44, 265203 (2011)

    Article  Google Scholar 

  10. Kac, V.G.: Lie superalgebras, Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  11. Kac, V.G.: Representations of classical Lie superalgebras, Lect. Notes Math. 676, 597–626 (1978)

    Article  Google Scholar 

  12. Kamupingene, A.H., Palev, T.D., Tsavena, S.P.: Wigner quantum systems. Two particles interacting via a harmonic potential. I. Two-dimensional space, J. Math. Phys. 27, 2067–2075 (1986)

    Google Scholar 

  13. Kapuscik, E.: Galilean covariant Lie algebra of quantum mechanical observables, Czech J. Phys. 50, 1279–1282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. King, R.C., Palev, T.D., Stoilova, N.I., Van der Jeugt, J.: The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator, J. Phys. A: Math. Gen. 36, 4337–4362 (2003)

    Article  MATH  Google Scholar 

  15. King, R.C., Palev, T.D., Stoilova, N.I., Van der Jeugt, J.: A non-commutative n-particle 3D Wigner quantum oscillator, J. Phys. A: Math. Gen. 36, 11999–12019 (2003)

    Article  MATH  Google Scholar 

  16. Lievens, S., Van der Jeugt, J.: Spectrum generating functions for non-canonical quantum oscillators, J. Phys. A: Math. Theor. 41, 355204 (2008)

    Article  Google Scholar 

  17. Lievens, S., Stoilova, N.I., Van der Jeugt, J.: Harmonic oscillators coupled by springs: Discrete solutions as a Wigner quantum system, J. Math. Phys. 47, 113504 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lievens, S., Stoilova, N.I., Van der Jeugt, J.: Harmonic oscillator chains as Wigner Quantum Systems: periodic and fixed wall boundary conditions in gl(1 | n) solutions, J. Math. Phys. 49, 073502 (2008)

    Article  MathSciNet  Google Scholar 

  19. Lievens, S., Stoilova, N.I., Van der Jeugt, J.: The paraboson Fock space and unitary irreducible representations of the Lie superalgebra osp(1/2n), Comm. Math. Phys. 281, 805–826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  21. Man’ko, V.I., Marmo, G., Zaccaria, F., Sudarshan, E.C.G.: Wigner’s problem and alternative commutation relations for quantum mechanics, Int. J. Mod. Phys. B11, 1281–1296 (1997)

    Google Scholar 

  22. Mukunda, N., Sudarshan, E.C.G., Sharma, J.K., Mehta, C.L.: Representations and properties of para-Bose oscillator operators. 1. Energy, position and momentum eigenstates, J. Math. Phys. 21, 2386–2394 (1980)

    Google Scholar 

  23. Ohnuki, Y., Kamefuchi, S.: Quantum Field Theory and Parastatistics. Springer, New-York (1982)

    Book  MATH  Google Scholar 

  24. Palev, T.D.: Lie-superalgebraical approach to the second quantization, Czech J. Phys. 29, 91–98 (1979)

    Article  MathSciNet  Google Scholar 

  25. Palev, T.D.: On a dynamical quantization, Czech J. Phys. 32, 680–687 (1982)

    Article  MathSciNet  Google Scholar 

  26. Palev, T.D.: Wigner approach to quantization. Noncanonical quantization of two particles interacting via a harmonic potential, J. Math. Phys. 23, 1778–1784 (1982)

    Google Scholar 

  27. Palev, T.D., Stoilova, N.I.: Wigner quantum oscillators, J. Phys. A: Math. Gen. 27, 977–983 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Palev, T.D., Stoilova, N.I.: Wigner quantum oscillators − osp(3/2) oscillators, J. Phys. A: Math. Gen. 27, 7387–7401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Palev, T.D., Stoilova, N.I.: Many-body Wigner quantum systems, J. Math. Phys. 38, 2506–2523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Palev, T.D., Stoilova, N.I.: Wigner quantum systems: Lie superalgebraic approach, Rep. Math. Phys. 49, 395–404 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Regniers, G., Van der Jeugt, J.: The Hamiltonian H = xp and Classification of osp(1/2) Representations, AIP Conf. Proc. 1243, 138–147 (2010)

    Article  Google Scholar 

  32. Regniers, G., Van der Jeugt, J.: Wigner quantization of some one-dimensional Hamiltonians, J. Math. Phys. 51, 123515 (2010)

    Article  MathSciNet  Google Scholar 

  33. Regniers, G., Van der Jeugt, J.: Angular momentum decomposition of the three-dimensional Wigner harmonic oscillator, J. Math. Phys. 52, 113503 (2011)

    Article  MathSciNet  Google Scholar 

  34. Stoilova, N.I., Van der Jeugt, J.: Solutions of the compatibility conditions for a Wigner quantum oscillator, J. Phys. A: Math. Gen. 38, 9681–9687 (2005)

    Article  MATH  Google Scholar 

  35. Van der Jeugt, J.: Finite- and infinite-dimensional representations of the orthosymplectic superalgebra osp(3,2), J. Math. Phys. 25, 3334–3349 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wigner, E.P.: Do the equations of motion determine the quantum mechanical commutation relations? Phys. Rev. 77, 711–712 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wybourne, B.G.: Classical Groups for Physicists. Wiley, New York (1978)

    Google Scholar 

Download references

Acknowledgements

This research was supported by project P6/02 of the Interuniversity Attraction Poles Programme (Belgian State—Belgian Science Policy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Van der Jeugt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Van der Jeugt, J. (2013). Wigner Quantization and Lie Superalgebra Representations. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_10

Download citation

Publish with us

Policies and ethics