A Lump Solution in SFT

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)


A concrete example of lump solution in bosonic open string field theory is presented and discussed. It is shown that the solution satisfies the equation of motion and is not a pure gauge. The expression of its energy is written down explicitly. The value of the energy, calculated both numerically and analytically turns out to be in agreement with that of a D24 brane tension.


Open String Tachyon Condensation Tachyon Vacuum Renormalization Group Flow Homotopy Operator 


  1. 1.
    Bonora, L., Maccaferri, C., Tolla, D.D.: Relevant deformations in open string field theory: A simple solution for lumps. JHEP 1111, 107 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonora, L., Giaccari, S., Tolla, D.D.: The energy of the analytic lump solution in SFT. JHEP 1108, 158 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonora, L., Giaccari, S., Tolla, D.D.: Analytic solutions for Dp branes in SFT. [JHEP 12, 033 (2011) arXiv:1105.5926 [hep-th]]Google Scholar
  4. 4.
    Bonora, L., Giaccari, S., Tolla, D.D.: Lump solutions in SFT. Complements. [POS, 044 (ICMP 2012) arXiv:1109.4336 [hep-th]]Google Scholar
  5. 5.
    Ellwood, I.: Singular gauge transformations in string field theory. JHEP 0905, 037 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ellwood, I., Schnabl, M.: Proof of vanishing cohomology at the tachyon vacuum. JHEP 0702, 096 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Erler, T., Maccaferri, C.: Comments on lumps from RG flows. JHEP 1111, 092 (2011) [arXiv:1105.6057 [hep-th]]Google Scholar
  8. 8.
    Erler, T., Schnabl, M.: A simple analytic solution for tachyon condensation. JHEP 0910, 066 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kutasov, D., Marino, M., Moore, G.W.: Some exact results on tachyon condensation in string field theory. JHEP 0010, 045 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Okawa, Y.: Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory. JHEP 0604, 055 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schnabl, M.: Analytic solution for tachyon condensation in open string field theory. Adv. Theor. Math. Phys. 10, 433 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Sen, A.: Tachyon condensation on the brane anti-brane system. JHEP 9808, 012 (1998); BPS D-branes on nonsupersymmetric cycles. JHEP 9812, 021 (1998)Google Scholar
  13. 13.
    Sen, A.: Descent relations among bosonic D-branes. Int. J. Mod. Phys. A 14, 4061 (1999)MATHCrossRefGoogle Scholar
  14. 14.
    Sen, A.: Open closed duality: Lessons from matrix model. Mod. Phys. Lett. A 19, 841 (2004)CrossRefGoogle Scholar
  15. 15.
    Sen, A.: Open and closed strings from unstable D-branes. Phys. Rev. D 68, 106003 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Witten, E.: Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Witten, E.: Some computations in background independent off-shell string theory. Phys. Rev. D 47, 3405 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.International School for Advanced StudiesSISSATriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly

Personalised recommendations