Advertisement

A Lump Solution in SFT

  • Loriano Bonora
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 36)

Abstract

A concrete example of lump solution in bosonic open string field theory is presented and discussed. It is shown that the solution satisfies the equation of motion and is not a pure gauge. The expression of its energy is written down explicitly. The value of the energy, calculated both numerically and analytically turns out to be in agreement with that of a D24 brane tension.

Keywords

Open String Tachyon Condensation Tachyon Vacuum Renormalization Group Flow Homotopy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bonora, L., Maccaferri, C., Tolla, D.D.: Relevant deformations in open string field theory: A simple solution for lumps. JHEP 1111, 107 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonora, L., Giaccari, S., Tolla, D.D.: The energy of the analytic lump solution in SFT. JHEP 1108, 158 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonora, L., Giaccari, S., Tolla, D.D.: Analytic solutions for Dp branes in SFT. [JHEP 12, 033 (2011) arXiv:1105.5926 [hep-th]]Google Scholar
  4. 4.
    Bonora, L., Giaccari, S., Tolla, D.D.: Lump solutions in SFT. Complements. [POS, 044 (ICMP 2012) arXiv:1109.4336 [hep-th]]Google Scholar
  5. 5.
    Ellwood, I.: Singular gauge transformations in string field theory. JHEP 0905, 037 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ellwood, I., Schnabl, M.: Proof of vanishing cohomology at the tachyon vacuum. JHEP 0702, 096 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Erler, T., Maccaferri, C.: Comments on lumps from RG flows. JHEP 1111, 092 (2011) [arXiv:1105.6057 [hep-th]]Google Scholar
  8. 8.
    Erler, T., Schnabl, M.: A simple analytic solution for tachyon condensation. JHEP 0910, 066 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kutasov, D., Marino, M., Moore, G.W.: Some exact results on tachyon condensation in string field theory. JHEP 0010, 045 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Okawa, Y.: Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory. JHEP 0604, 055 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schnabl, M.: Analytic solution for tachyon condensation in open string field theory. Adv. Theor. Math. Phys. 10, 433 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Sen, A.: Tachyon condensation on the brane anti-brane system. JHEP 9808, 012 (1998); BPS D-branes on nonsupersymmetric cycles. JHEP 9812, 021 (1998)Google Scholar
  13. 13.
    Sen, A.: Descent relations among bosonic D-branes. Int. J. Mod. Phys. A 14, 4061 (1999)MATHCrossRefGoogle Scholar
  14. 14.
    Sen, A.: Open closed duality: Lessons from matrix model. Mod. Phys. Lett. A 19, 841 (2004)CrossRefGoogle Scholar
  15. 15.
    Sen, A.: Open and closed strings from unstable D-branes. Phys. Rev. D 68, 106003 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Witten, E.: Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Witten, E.: Some computations in background independent off-shell string theory. Phys. Rev. D 47, 3405 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.International School for Advanced StudiesSISSATriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly

Personalised recommendations