Skip to main content

Accelerated Diversification by Spatial and Temporal Isolation Associated with Life-History Evolution in Insects

  • Chapter
  • First Online:
Species Diversity and Community Structure

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Life history evolution may alter the mode and rate of the speciation of a lineage. Recent studies on diversification processes associated with life history evolution in insects are introduced here. First, the hypothesis that the repeated evolution of flightlessness in winged insects may have promoted speciation through reduced gene flow among local populations was tested for one of the largest group of insects, the Coleoptera. A close examination of the geographic differentiation and speciation rates in carrion beetles (Silphinae) in relation to flight capability generally supported the hypothesis and suggested that evolution of flightlessness contributed to beetle diversity. Second, an allochronic speciation hypothesis was tested for a geometrid winter moth for which the reproductive period between early and late winter is disrupted by severe midwinter conditions at high latitudes or elevations. The formation of genetically divergent allochronic populations was widely and repeatedly observed in habitats with severe winters, but not in habitats with mild winters. This suggests that seasonal climatic harshness can act as a temporal barrier leading to reproductive isolation and is a potentially important driving force for allochronic speciation in insects. These novel diversification processes provide new insights into species diversity and the speciation processes of insects in spatially heterogeneous and seasonally variable environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot P, Withgot JH (2004) Phylogenetic and molecular evidence for allochronic speciation in gall-forming aphids (Pemphigus). Evolution 58:539–553

    PubMed  CAS  Google Scholar 

  • Alexander RD, Bigelow RS (1960) Allochronic speciation in field crickets, and a new species, Acheta veletis. Evolution 14:334–346

    Article  Google Scholar 

  • Beljaev EA (1996) “Winter” geometridae (Lepidoptera) of Japan sea region: taxonomic composition, morphological and biological features, biogeographic analysis. Chtena Pamyati Alekseya Ivanovicha Kurentsova 6:33–76

    Google Scholar 

  • Brouat C, Sennedot F, Audiot P, Leblois R, Rasplus J-Y (2003) Fine-scale genetic structure of two carabid species with contrasted levels of habitat specialization. Mol Ecol 12:1731–1745

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Darlington PJ Jr (1943) Carabidae of mountains and islands: data on the evolution of isolated faunas, and on atrophy of wings. Ecol Monogr 13:37–61

    Article  Google Scholar 

  • Devaux C, Lande R (2008) Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift. Proc R Soc B 275:2723–2732

    Article  PubMed  Google Scholar 

  • Dieckmann U, Doebeli A, Metz JAJ, Tautz D (eds) (2004) Adaptive speciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630

    Article  PubMed  CAS  Google Scholar 

  • Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559

    Article  PubMed  CAS  Google Scholar 

  • Filchak KE, Roethele JB, Feder JF (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742

    Article  PubMed  CAS  Google Scholar 

  • Friesen VL, Smith AL, Gómez-Diaz E, Bolton M, Furness RW, González-Solís J, Monteiro LR (2007) Sympatric speciation by allochrony in a seabird. Proc Natl Acad Sci USA 104:18589–18594

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Hall MC, Willis JH (2006) Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60:2466–2477

    PubMed  Google Scholar 

  • Hansen TA (1983) Modes of larval development and rates of speciation in early tertiary neogastropods. Science 220:501–502

    Article  PubMed  CAS  Google Scholar 

  • Hastings A, Harrison S (1994) Metapopulation dynamics and genetics. Annu Rev Ecol Syst 25:167–188

    Article  Google Scholar 

  • Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Ortí G, Sutherlin M, Duhachek A, Zera A (2000) Phylogenetic relationships of North American field crickets inferred from mitochondrial DNA data. Mol Phylogenet Evol 17:48–57

    Article  PubMed  CAS  Google Scholar 

  • Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John O, St WR, Hammond PM, Ahrens D, Balke M, Caterino MS, Gomez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Sota T (2011) Macro-scale evolutionary patterns of flight muscle dimorphism in the carrion beetle Necrophila japonica. Ecol Evol 1:97–105

    Article  PubMed  Google Scholar 

  • Ikeda H, Kubota K, Kagaya T, Abe T (2007) Flight capability and food habits of silphine beetles: are flightless species really “carrion beetles”? Ecol Res 22:237–241

    Article  Google Scholar 

  • Ikeda H, Kagaya T, Kubota K, Abe T (2008) Evolutionary relationships among food habit, loss of flight, and reproductive traits: life history evolution in the Silphinae (Coleoptera: Silphidae). Evolution 62:2065–2079

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Kubota K, Cho YB, Liang H, Sota T (2009) Different phylogeographic patterns in two Japanese Silpha species (Coleoptera: Silphidae) affected by climatic gradients and topography. Biol J Linn Soc 98:452–467

    Article  Google Scholar 

  • Ikeda H, Nishikawa M, Sota T (2012) Loss of flight promotes beetle diversification. Nat Comm 3:648

    Article  Google Scholar 

  • Jablonski D (1986) Larval ecology and macroevolution in marine invertebrates. Bull Mar Sci 39:565–587

    Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Marshall DC, Cooley JR (2000) Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-year Magicicada neotredecim. Evolution 54:1313–1325

    PubMed  CAS  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mckinnon JS, Mori S, Blackman BK, David L, Kingsley D, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298

    Article  PubMed  CAS  Google Scholar 

  • Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosold R, Eggleton P, Barraclough TG, Vogler AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H (1998) A taxonomical and ecological study of the winter geometrid moths (Lepidoptera, Geometridae) from Japan. Tinea 15(suppl 2):1–246

    Google Scholar 

  • Papa R, Israel JA, Marzano FN, May B (2007) Assessment of genetic variation between reproductive ecotypes of Klamath River steelhead reveals differentiation associated with different run-timings. J Appl Ichtyol 23:142–146

    Article  Google Scholar 

  • Papadopoulou A, Anastasiou I, Keskin B, Vogler AP (2009) Comparative phylogeography of tenebrionid beetles in the Aegean archipelago: the effect of dispersal ability and habitat preference. Mol Ecol 18:2503–2517

    Article  PubMed  CAS  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609

    Article  PubMed  Google Scholar 

  • Ribera I, Barraclough TG, Vogler AP (2001) The effect of habitat type on speciation rates and range movements in aquatic beetles: inferences from species-level phylogenies. Mol Ecol 10:721–735

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1986) The evolution of wing dimorphism in insects. Evolution 40:1009–1020

    Article  Google Scholar 

  • Roff DA (1990) The evolution of flightlessness in insects. Ecol Monogr 60:389–421

    Article  Google Scholar 

  • Roff DA (1991) Life history consequences of bioenergetic and biomechanical constraints on migration. Am Zool 31:205–215

    Google Scholar 

  • Roff DA (1994) The evolution of flightlessness: is history important? Evol Ecol 8:639–657

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31:243–251

    Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Santos H, Rousselet J, Magnoux E, Paiva MR, Branco M, Kerdelhué C (2007) Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proc R Soc B 274:935–941

    Article  PubMed  CAS  Google Scholar 

  • Santos H, Burban C, Rousselet J, Rossi JP, Branco M, Kerdelhué C (2011) Incipient allochronic speciation in the pine processionary moth (Thaumetopoea pityocampa, Lepidoptera, Notodontidae). J Evol Biol 24:146–158

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Tang J, Dalwadi S, Staley G, Deniega J, Thomas RU (2000) Genetic evidence for assortative mating between 13-year cicadas and sympatric “17-year cicadas with 13-year life cycles” provides support for allochronic speciation. Evolution 54:1326–1336

    PubMed  CAS  Google Scholar 

  • Smith CI, Farrell BD (2006) Evolutionary consequences of dispersal ability in cactus-feeding insects. Genetica 126:323–334

    Article  PubMed  Google Scholar 

  • Sobel JM, Chen G, Watt LR, Schemske DW (2009) The biology of speciation. Evolution 64:295–315

    Article  PubMed  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet fro ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  • Tomaiuolo M, Hansen TF, Levitan DR (2007) A theoretical investigation of sympatric evolution of temporal reproductive isolation as illustrated by marine broadcast spawners. Evolution 61:2584–2595

    Article  PubMed  Google Scholar 

  • Vogler AP, Timmermans MJTN (2012) Speciation: don’t fly and diversity? Curr Biol 22:R284

    Article  PubMed  CAS  Google Scholar 

  • Wagner DL, Liebherr JK (1992) Flightlessness in insects. Trends Ecol Evol 7:216–220

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Sota T (2007) Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Mol Phyol Evol 44:711–723

    Article  CAS  Google Scholar 

  • Yamamoto S, Sota T (2009) Incipient allochronic speciation by climatic disruption of the reproductive period. Proc R Soc B 276:2711–2719

    Article  PubMed  Google Scholar 

  • Yamamoto S, Sota T (2012) Parallel allochronic divergence in a winter moth due to disruption of reproductive period by winter harshness. Mol Ecol 21:174–183

    Article  PubMed  Google Scholar 

  • Zera AJ (1981) Genetic structure of two species of waterstriders (Gerridae: Hemiptera) with differing degrees of winglessness. Evolution 35:218–225

    Article  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Hiroshi Ikeda and Satoshi Yamamoto for their collaboration and reviewing of this manuscript. Our studies of beetles and winter moths were supported by the Global COE Program A06, “Formation of Strategic Base for Biodiversity and Evolutionary Research: from Genomics to Ecosystems” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank especially K. Agata, the project leader, and E. Kawaguchi, the sequencing manager, for their continuous support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sota, T., Kagata, H., Ando, Y., Utsumi, S., Osono, T. (2014). Accelerated Diversification by Spatial and Temporal Isolation Associated with Life-History Evolution in Insects. In: Species Diversity and Community Structure. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54261-2_3

Download citation

Publish with us

Policies and ethics