Advertisement

Materials for the Fabrication of Composites

  • Yoshinori Nishida
Chapter

Abstract

Properties of the major reinforcement materials used for metal matrix composites are introduced in this chapter and their characteristic features are discussed and compared. The properties of a composite are partly determined by the properties of each constituent material, because each constituent retains its own microstructure and properties within the composite. Production methods for reinforcements are briefly described, along with their influence on the properties of the reinforcements including their compatibility with matrix metal. Reinforcements may be particles or fibers, including whiskers, nanofibers and nanotubes. They are made from ceramics or carbon. Carbon fibers with high thermal conductivity are introduced, because they are likely to be useful in carbon/metal composite heat sink materials.

Keywords

Carbon Fiber Silicon Nitride Aluminum Nitride Molten Aluminum Precursor Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Weimer, A.W. (ed.): Carbide. Nitride and Boride Materials Synthesis and Processing. Chapman and Hall, New York (1997)Google Scholar
  2. 2.
    Altenpohl, D.G.: Aluminum: Technology, Applications, and Environment, a Profile of a Modern Metal, 6th edn, p. 7. The Aluminum Association, Inc. and TMS, Warrendale (1998)Google Scholar
  3. 3.
    Yanagida, H.: Fine Ceramics, p. 46. Ohm Publishing Co., Ltd, Tokyo (1982) (in Japanese)Google Scholar
  4. 4.
    Somiya, S.: Ceramics Science and Technology at the Present and in the Future, p. 35. Uchida Rokakuho Publishing Co., Ltd, Tokyo (1982) (in Japanese)Google Scholar
  5. 5.
    Donomoto, T., Miura, N., Funatani, K., Miyake, N.: Ceramic fiber reinforced piston for high performance diesel engines. SAE Paper No. 830252 (1983)Google Scholar
  6. 6.
    Ushio, H., Hayashi, N., Shibata, K., Ebisawa, Y.: Wear properties of hybrid fiber reinforced aluminum matrix composites and application to an automotive engine block. J. Jpn Inst. Light Met. 40, 787–792 (1990)CrossRefGoogle Scholar
  7. 7.
    Takada, M.: Preprint of 125th Reinforced Plastic Committee. Society of Materials Science, Japan (1997)Google Scholar
  8. 8.
    Tsuchida, T., Akimoto, H.: Review of alumina fiber. J. Jpn Inst. Light Met. 37, 762–766 (1987)CrossRefGoogle Scholar
  9. 9.
    Yajima, S., Okamoto, K., Hayashi, J., Omori, M.: Synthesis of continuous SiC fibers with high tensile strength. J. Am. Ceram. Soc. 59, 324–327 (1976)CrossRefGoogle Scholar
  10. 10.
    Yajima, S.: Special heat-resisting materials from organometallic polymers. Am. Ceram. Soc. Bull. 62, 893–898 (1983)Google Scholar
  11. 11.
    Satoh, M.: Development of tyranno-fiber and application to ceramic matrix composites. J. Jpn Soc. Compos. Mater. 25, 9–15 (1999)CrossRefGoogle Scholar
  12. 12.
    Chawla, K.K.: Fibrous Materials, p. 211. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  13. 13.
    Catalog. Nippon Graphite Fiber Co., Tokyo. http://www.ngfworld.com
  14. 14.
    Iijima, S.: Helical microtubes of graphite carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  15. 15.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  16. 16.
    Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  17. 17.
    Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)CrossRefGoogle Scholar
  18. 18.
    Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)CrossRefGoogle Scholar
  19. 19.
    Uozumi, H., Kobayashi, K., Nakanishi, K., Matsunaga, T., Shinozaki, K., Sakamoto, H., Tsukada, T., Masuda, C., Yoshida, M.: Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater. Sci. Eng. A 495, 282–287 (2008)CrossRefGoogle Scholar
  20. 20.
    Hatano, M., Ohsaki, T., Arakawa, K.: Graphite whiskers by new process and their composites, advancing technology in materials and processes. Sci. Adv. Mater. Process. Natl. SAMPE Symp. 30, 1467–1476 (1985)Google Scholar
  21. 21.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Thermal and mechanical properties of VGCF-containing aluminum. Trans. Jpn. Soc. Mech. Eng. A 74, 655–661 (2008)CrossRefGoogle Scholar
  22. 22.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Effect of CNT addition on thermal properties of VGCF/aluminum composites. Trans. Jpn. Soc. Mech. Eng. A 75, 27–33 (2009)Google Scholar
  23. 23.
    Saito, H., Dei, T.: Vapor phase growth of β-SiC whiskers with fluorosilicate melt. Yogyo-Kyokai-Shi (Ceram. Soc. Jpn.) 88, 265–270 (1980)CrossRefGoogle Scholar
  24. 24.
    Saito, H., Hayashi, T., Miura, K.: Vapor growth of Si3N4 whiskers by nitriding of Si2-C-Na3AlF6 system. Nippon Kagaku kaishi (Chem. Soc. Jpn.) 1981, 1371–1377 (1981)CrossRefGoogle Scholar
  25. 25.
    Sasaki, K., Kuroda, K., Imura, T., Saka, K.: Microstructural investigation of α–Si3N4 whiskers by transmission electron microscopy. Yogyo-Kyokai-Shi (Ceram. Soc. Jpn.) 94, 773–778 (1986)CrossRefGoogle Scholar
  26. 26.
    Nishida, Y., Imai, T., Yamada, M., Matsubara, H., Shirayanagi, I.: Fabrication of potassium titanate whisker/aluminum composites and some their properties. J. Jpn. Inst. Light Met. 38, 515–521 (1988)CrossRefGoogle Scholar
  27. 27.
    Wada, H., Sakane, K., Kitamura, T., Hata, H.: The reaction sequence in the synthesis of aluminium borate whiskers. J. Mater. Sci. 31, 537–544 (1996)CrossRefGoogle Scholar
  28. 28.
    Wada, H., Sakane, K., Kitamura, T., Hata, H., Kambara, H.: Synthesis of aluminium borate whiskers in potassium sulphate flux. J. Mater. Sci. Lett. 10, 1076–1077 (1991)CrossRefGoogle Scholar
  29. 29.
    Suganuma, K., Fujita, T., Sasaki, G., Suzuki, N.: Evaluation of strength and heat-resistance for aluminum-borate whisker reinforced AC8A aluminum alloy composite. J. Jpn. Inst. Light Met. 41, 270–275 (1991)CrossRefGoogle Scholar
  30. 30.
    Saito, N., Nakanishi, M., Nishida, Y.: Effect of heat treatment on the mechanical properties of aluminum-borate whisker reinforced 6061 aluminum alloy. J. Jpn. Inst. Light Met. 44, 86–90 (1994)CrossRefGoogle Scholar
  31. 31.
    Yamauchi, T., Nishida, Y., Nakae, H.: Pressure infiltration of molten aluminum into preform of granulated whiskers. J. Jpn. Inst. Met. 61, 158–165 (1997)Google Scholar
  32. 32.
    Yamauchi, T., Suzuki, M., Takahashi, M., Takada, I., Toda, M.: Trans. Soc. Automot. Eng. Jpn. 30, 31 (1999)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshinori Nishida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations