Superplasticity of Composites

  • Yoshinori Nishida


The superplasticity of metal matrix composites is introduced along with production methods for superplastic composites. Composites are strengthened by particles or fibers and usually have poor ductility, so superplastic composites (which were discovered in 1984) are definitely unusual. Superplasticity in MMCs occurs at high strain rates and at high temperatures near the solidus line of the matrix alloys. The strain rate is 100–1,000 times faster than that required to produce superplasticity in alloys. In this chapter, the mechanism of superplasticity is discussed using constitutive equations, where the shapes of the reinforcements are limited to particles or short, fine fibers. Equal channel angular pressing is introduced as one production method for superplastic MMCs.


Apparent Activation Energy Metal Matrix Composite Equal Channel Angular Pressing Triple Junction Accumulative Roll Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rosenhain, W., Ewen, D.: Intercrystalline cohesion in metals. J. Inst. Met. 8, 149–185 (1912)Google Scholar
  2. 2.
    Jenkins, C.H.M.: Strength of Cd–Zn and Sn–Pb alloy solder. J. Inst. Met. 40, 21–32 (1928)Google Scholar
  3. 3.
    Pearson, C.E.: Viscous properties of extruded eutectic alloys of Pb–Sn. J. Inst. Met. 54, 111–123 (1934)Google Scholar
  4. 4.
    Bochvar, A.A., Sviderskaya, Z.A.: Superplasticity in zinc–aluminum alloys. Izvest. Akad. Nauk SSSR Otdel. Tekh. Nauk. 9, 821–827 (1945)Google Scholar
  5. 5.
    Underwood, E.E.: A review of superplasticity and related phenomenon. J. Met. 14, 914–919 (1962)Google Scholar
  6. 6.
    Nieh, T.G., Henshall, C.A., Wadsworth, J.: Superplasticity at high strain rate in SiC-2124 Al composite. Scripta Metall. 18, 1405–1408 (1984)CrossRefGoogle Scholar
  7. 7.
    Wakai, F., Sakaguchi, S., Matsuno, Y.: Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Adv. Ceram. Mater. 1, 259–263 (1986)Google Scholar
  8. 8.
    Imai, T., Mabuchi, M., Tozawa, Y., Yamada, M.: Superplasticity in β-silicon nitride whisker-reinforced 2124 aluminum composite. J. Mater. Sci. Lett. 9, 255–257 (1990)CrossRefGoogle Scholar
  9. 9.
    Lin, Z.-R., Chokshi, A.H., Langdon, T.G.: An investigation of grain boundary sliding in superplasticity at high elongations. J. Mater. Sci. 23, 2712–2722 (1988)CrossRefGoogle Scholar
  10. 10.
    Matsuki, K., Morita, H., Yamada, M., Murakami, Y.: Relative motion of grains during superplastic flow in an Al–9Zn–1 wt.% Mg alloy. Met. Sci 11, 156–163 (1977)CrossRefGoogle Scholar
  11. 11.
    Matsuki, K.: Development and property of superplastic aluminum alloys. Bull. Jpn. Inst. Met. 26, 263–271 (1987)CrossRefGoogle Scholar
  12. 12.
    Nieh, T.G., Wadsworth, J., Sherby, O.D.: Superplasticity in Metals and Ceramics. Cambridge University Press, Cambridge (1996)Google Scholar
  13. 13.
    Maruyama, K., Nakajima, H.: High Temperature Strength of Materials, p. 15. Uchida Rokakuho Publishing Co., Ltd., Tokyo (1997) (in Japanese)Google Scholar
  14. 14.
    Langdon, T.G.: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437–2443 (1994)CrossRefGoogle Scholar
  15. 15.
    Mishra, R.S., Bieler, T.R., Mukherjee, A.K.: Superplasticity in powder metallurgy aluminum alloys and composites. Acta Metall. Mater. 43, 877–891 (1995)CrossRefGoogle Scholar
  16. 16.
    Nieh, T.G., Wadsworth, J.: High-strain-rate superplasticity in aluminum matrix composites. Mater. Sci. Eng. A147, 129–142 (1991)CrossRefGoogle Scholar
  17. 17.
    Nieh, T.G., Wadsworth, J., Imai, T.: A rheological view of high-strain-rate superplasticity in alloys and metal-matrix composites. Scripta Metall. Mater. 26, 703–708 (1992)CrossRefGoogle Scholar
  18. 18.
    Kajihara, K., Yoshizawa, Y., Sakuma, T.: The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Metall. Mater. 43, 1235–1242 (1995)CrossRefGoogle Scholar
  19. 19.
    Lim, S.-W., Imai, T., Nishida, Y., Choh, T.: High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method. Scripta Metall. Mater. 32, 1713–1717 (1995)CrossRefGoogle Scholar
  20. 20.
    Segal, V.M., Goforth, R.E., Hartwig, K.T.: The application of equal channel angular extrusion to produce extraordinary properties in advanced metallic materials. In: Henein, H., Oki, T. (eds.) Processing Materials for Properties, pp. 971–974. Warrendale, TMS (1991)Google Scholar
  21. 21.
    Langdon, T.G., Furukawa, M., Nemoto, M., Horita, Z.: Using equal-channel angular pressing for refining grain size. JOM 52(4), 30–33 (2000)CrossRefGoogle Scholar
  22. 22.
    Lowe, T.C., Valiev, R.Z.R.Z.: Producing nanoscale microstructures through severe plastic deformation. JOM 52(4), 27–29 (2000)CrossRefGoogle Scholar
  23. 23.
    Tsuji, N., Shiotsuki, K., Saito, Y.: Superplasticity of ultra-fine grained Al–Mg alloy produced by accumulative roll-bonding. Mater. Trans. JIM 40, 765–771 (1999)CrossRefGoogle Scholar
  24. 24.
    Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T.: Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999)CrossRefGoogle Scholar
  25. 25.
    Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., Kopylov, V.I.: Plastic working of metals by simple shear. Russ. Metall. (Metally) 1(99–115) (1981)Google Scholar
  26. 26.
    Segal, V.M.: Materials processing by simple shear. Mater. Sci. Eng. A197, 157–164 (1995)CrossRefGoogle Scholar
  27. 27.
    Valiev, R.Z., Korznikov, A.V., Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A168, 141–148 (1993)CrossRefGoogle Scholar
  28. 28.
    Nishida, Y., Arima, H., Kim, J.-C., Ando, T.: Rotary-die equal-channel angular pressing of an Al–7 mass% Si–0.35 mass% Mg alloy. Scripta Mater. 45, 261–266 (2001)CrossRefGoogle Scholar
  29. 29.
    Ma, A., Nishida, Y., Suzuki, K., Shigematsu, I., Saito, N.: Characteristics of plastic deformation by rotary-die equal-channel angular pressing. Scripta Mater. 52, 433–437 (2005)CrossRefGoogle Scholar
  30. 30.
    Nishida, Y., Shigematsu, I., Arima, H., Kim, J.-C., Ando, T.: Superplasticity of SiC whisker reinforced 7075 composite processed by rotary-die equal-channel angular pressing. J. Mater. Sci. Lett. 21, 465–468 (2002)CrossRefGoogle Scholar
  31. 31.
    Ma, A., Suzuki, K., Nishida, Y., Saito, N., Shigematsu, I., Takagi, M., Iwata, H., Watazu, A., Imura, T.: Impact toughness of an ultrafine-grained Al-11 mass% Si alloy processed by rotary-die equal-channel angular pressing. Acta Mater. 53, 211–220 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshinori Nishida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations