Properties of Composites

  • Yoshinori Nishida


In this chapter the mechanical and physical properties of metal matrix composites are discussed. Mechanical properties such as strength and elastic modulus depend on the shape and properties of the reinforcements, their distribution and volume fraction and the bonding strength at the reinforcement/matrix interface, as well as the properties of the matrix itself. Basic ideas and proposed models are introduced to understand the mechanical properties. Some physical properties such as specific heat and density are determined by the intrinsic properties of reinforcements and the matrix. However, other properties, such as thermal expansion coefficient, depend on the distribution, volume fraction, shape and state of the reinforcements. Some proposed models for physical properties are also introduced.


Thermal Expansion Coefficient Crack Growth Rate Matrix Metal High Thermal Conductivity Fatigue Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chawla, K.K.: Composite Materials, Science and Engineering, 2nd edn. Springer, New York (1998)Google Scholar
  2. 2.
    Hill, R.: Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. J. Mech. Phys. Solids 12, 199–212 (1964)CrossRefGoogle Scholar
  3. 3.
    Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)CrossRefGoogle Scholar
  4. 4.
    Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–78 (1952)CrossRefGoogle Scholar
  5. 5.
    Kelly, A., Macmillan, N.H.: Strong Solids, 3rd edn. Oxford University Press, Oxford (1986)Google Scholar
  6. 6.
    Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites, p. 12. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  7. 7.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)CrossRefGoogle Scholar
  8. 8.
    Taya, M., Arsenault, R.J.: Metal Matrix Composites—Thermo-Mechanical Behavior. Pergamon, Oxford (1989)Google Scholar
  9. 9.
    Coleman, B.D.: On the strength of classical fibres and fibre bundles. J. Mech. Phys. Solids 7, 60–70 (1958)CrossRefGoogle Scholar
  10. 10.
    Chawla, K.K.: Fibrous Materials, p. 258. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  11. 11.
    Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. Trans. ASME 18, 293–297 (1951)Google Scholar
  12. 12.
    The Ceramics Society of Japan: Ceramic Advanced Materials, p. 1. Ohmsha, Ltd., Tokyo (1991)Google Scholar
  13. 13.
    Rosen, B.W.: Mechanics of Composite Materials: Recent Advances, p. 105. Pergamon, Oxford (1983)CrossRefGoogle Scholar
  14. 14.
    Kagawa, Y.: Fiber Reinforced Metal Composites, p. 253. CMC Publisher, Tokyo (1985) (in Japanese)Google Scholar
  15. 15.
    Kelly, A., Macmillan, N.H.: Strong Solids, 3rd edn, p. 201. Oxford University Press, Oxford (1986)Google Scholar
  16. 16.
    Imai, T., Nishida, Y., Yamada, M., Shirayanagi, I., Matsubara, H.: Effect of cold rolling on the mechanical properties of Al/alumina short fiber composite. J. Jpn. Inst. Light Met. 37, 179–184 (1987)CrossRefGoogle Scholar
  17. 17.
    Griffith, A.A.: The phenomena of rupture and flow in solid. Philos. Trans. R. Soc. Lond. A221, 163–198 (1920)Google Scholar
  18. 18.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  19. 19.
    Irwin, G.R., Kies, J.A., Smith, H.L.: Fracture strengths relative to onset and arrest of crack propagation. Proc. Am. Soc. Test Mater. 58, 640–657 (1958)Google Scholar
  20. 20.
    Fujii, T., Zako, M.: Fracture and Mechanics of Composite Materials, p. 57. Jikkyo Shuppan Co. Ltd., Tokyo (1978) (in Japanese)Google Scholar
  21. 21.
    Yokobori, T.: An Interdisciplinary Approach to Fracture and Strength of Solids (trans and edit: Crisp, J.D.C.). Walter Nordhoff, Pub., Groningen (1968)Google Scholar
  22. 22.
    Ochiai, S., Osamura, K.: A study of multiple fracture phenomenon of a coating film on a metal fibre by means of computer simulation. J. Mater. Sci. 21, 2735–2743 (1986)CrossRefGoogle Scholar
  23. 23.
    Ochiai, S., Osamura, K.: Influence of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite. Metall. Trans. 21A, 971–977 (1990)CrossRefGoogle Scholar
  24. 24.
    Ochiai, S., Hayashi, K., Osamura, K.: Estimation of interfacial shear strength between superconducting oxides and silver sheath from multiple-fracture phenomenon of the oxide. Metall. Trans. 25A, 349–356 (1994)Google Scholar
  25. 25.
    Ochiai, S., Hojo, M.: Application of Monte Carlo simulation to mesomechanics of fiber-reinforced composite materials. Mater. Jpn. 33, 1397–1406 (1994)CrossRefGoogle Scholar
  26. 26.
    Williams, J.J., Chapman, N.C., Jakkali, V., Tanna, V.A., Chawla, N.: Characterization of damage evolution in SiC particle reinforced Al alloy matrix composites by in-situ X-ray synchrotoron tomography. Metall. Mater. Trans. 42A, 2999–3005 (2011)CrossRefGoogle Scholar
  27. 27.
    Kobayashi, T., Iwanari, H., Kim, H.-J., Yoon, E.-P., Watanabe, S.: Fracture toughness of SiCp/6061-T6 composite. J. Jpn. Inst. Light Met. 41, 89–94 (1991)CrossRefGoogle Scholar
  28. 28.
    Yoshino, M., Iwanari, H., Niinomi, M., Kobayashi, T.: Mechanical properties of SiC whisker reinforced aluminum alloys. J. Jpn. Inst. Light Met. 38, 593–599 (1988)CrossRefGoogle Scholar
  29. 29.
    Shirayanagi, I., Nishida, Y., Matsubara, H., Nakanishi, M., Kato, E.: Fatigue of alumina short fiber reinforced AC8A aluminum alloy composites. J. Jpn. Inst. Light Met. 41, 471–476 (1991)CrossRefGoogle Scholar
  30. 30.
    Donomoto, T., Miura, N., Funatani, K., Miyake, N.: Ceramic fiber reinforced piston for high performance diesel engines. SAE Paper No. 830252 (1983)Google Scholar
  31. 31.
    Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. Trans. ASME D 85, 528–534 (1963)CrossRefGoogle Scholar
  32. 32.
    Masuda, C., Tanaka, Y.: Fatigue crack propagation mechanisms of SiC whiskers or SiC particulates reinforced aluminum composites. In: Proceedings of the Fifth Japan–U.S. Conference on Composite Materials, Tama-City, Tokyo, June 1990, pp. 321–328 (1990)Google Scholar
  33. 33.
    Shang, J.K., Yu, W., Ritchie, R.O.: Role of silicon carbide particles in fatigue crack growth in SiC-particulate-reinforced aluminum alloy composites. Mater. Sci. Eng. A 102, 181–192 (1988)CrossRefGoogle Scholar
  34. 34.
    Chawla, N., Habel, U., Shen, Y.-L., Andres, C., Jones, J.W.: The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metall. Mater. Trans. 31A, 531–540 (2000)CrossRefGoogle Scholar
  35. 35.
    Lewandowski, J.J., Liu, C., Hunt Jr., W.H.: Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater. Sci. Eng. A107, 241–255 (1989)CrossRefGoogle Scholar
  36. 36.
    Toda, H., Kobayashi, T., Wada, Y.: Fracture mechanical simulation of a crack propagating in discontinuously-reinforced metal matrix composites. J. Jpn. Inst. Met. 59, 94–102 (1995)Google Scholar
  37. 37.
    Toda, H., Kobayashi, T., Wada, Y., Inoue, N.: Evaluation of fracture toughness and proposal of microstructurally-controlled composites by fracture-mechanics simulation. J. Jpn. Inst. Met. 59, 198–205 (1995)Google Scholar
  38. 38.
    Hasselman, D.P., Johnson, L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)CrossRefGoogle Scholar
  39. 39.
    Ota, H., Tomota, Y.: Estimation of the effective thermal conductivity and the analysis of temperature response in the transient state for composite materials. Bull. Jpn. Inst. Met. 29, 147–154 (1990)CrossRefGoogle Scholar
  40. 40.
    Ota, H., Tomota, Y.: A list of the thermal conductivity of composite materials. Bull. Jpn. Inst. Met. 29, 155–158 (1990)CrossRefGoogle Scholar
  41. 41.
    Turner, P.S.: Thermal-expansion stresses in reinforced plastics. J. Res. Natl. Bur. Stand. 37, 239–250 (1946)CrossRefGoogle Scholar
  42. 42.
    Kerner, E.H.: The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. (Lond.) 69B, 808–813 (1956)CrossRefGoogle Scholar
  43. 43.
    Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380–404 (1968)CrossRefGoogle Scholar
  44. 44.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)CrossRefGoogle Scholar
  45. 45.
    Lemieux, S., Elomari, S., Nemes, J.A., Skibo, M.D.: Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci. 33, 4381–4387 (1998)CrossRefGoogle Scholar
  46. 46.
    Ishikawa, T., Koyama, K., Kobayashi, S.: Thermal expansion coefficients of unidirectional composites. J. Compos. Mater. 12, 153–168 (1978)CrossRefGoogle Scholar
  47. 47.
    Rosen, B.W., Hashin, Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–173 (1970)CrossRefGoogle Scholar
  48. 48.
    Jasiuk, I., Mura, T., Tsuchida, E.: Thermal stresses and thermal expansion coefficients of short fiber composites with sliding interfaces. Trans. ASME 110, 96–100 (1988)Google Scholar
  49. 49.
    Yoda, S., Kurihara, N., Wakashima, K., Umekawa, S.: Thermal cycling-induced deformation of fibrous composites with particular reference to the tungsten-copper system. Metall. Trans. 9A, 1229–1236 (1978)CrossRefGoogle Scholar
  50. 50.
    Nakanishi, M., Nishida, Y., Sakai, Y.: Effect of thermal cycling on the properties of alumina short fiber-reinforced aluminum. In: Proceedings of the Fifth Japan–U.S. Conference on Composite Materials, Tokyo, pp. 301–308 (1990)Google Scholar
  51. 51.
    Rocher, J.P., Quenisset, J.M., Naslain, R.: Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment: application to composite material casting. J. Mater. Sci. 24, 2697–2703 (1989)CrossRefGoogle Scholar
  52. 52.
    Choy, K.-L., Derby, B.: Potential coating systems for inhibiting SiC/Ti interfacial reactions. In: Vincenzini, P. (ed.) Advanced Structural Fiber Composites, pp. 179–184. National Research Council/Techna, Italy (1995)Google Scholar
  53. 53.
    Catalog. Nippon Graphite Fiber Co., Tokyo.
  54. 54.
    Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Thermal and mechanical properties of VGCF-containing aluminum. Trans. Jpn. Soc. Mech. Eng. A 74(5), 23–29 (2008)Google Scholar
  57. 57.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Effect of CNT addition on thermal properties of VGCF/aluminum composites. Trans. Jpn. Soc. Mech. Eng. A 75(1), 27–33 (2009)Google Scholar
  58. 58.
    Ueno, T., Yoshioka, H.: Japanese Patent JP 4441768Google Scholar
  59. 59.
    Shimamura, S.: Kikai no kenkyu. 30, 99–105 (1978) (in Japanese)Google Scholar
  60. 60.
    Shimamura, S. (ed.): Miraio Hiraku Sentanzairyo (Advanced Materials with Bright Future), pp. 207–213. Kogyo Chyosakai, Tokyo (1982) (in Japanese)Google Scholar
  61. 61.
    Takagi, T., et al.: The Concept of Intelligent Materials and the Guidelines on R & D Promotion. Science and Technology Agency, Tokyo (1989)Google Scholar
  62. 62.
    Takeuchi, E., Matsuoka, S., Miyahara, K., Hirukawa, H., Ikeda, Y.: Proceedings of the 3rd National Intelligent Materials Symposium, pp. 31–33 (1994) (in Japanese)Google Scholar
  63. 63.
    Boller, C.: General Introduction. AGARD (Advisory Group for Aerospace Research & Development), Smart Structure and Materials. Implications for Military Aircraft of New Generation. North Atlantic Treaty Organization, I-1 to I-7 (1996)Google Scholar
  64. 64.
    Coughlin, J.P., Williams, J.J., Crawford, G.A., Chawla, N.: Interfacial reactions in model NiTi shape memory alloy fiber-reinforced Sn matrix “Smart” composites. Metall. Mater. Trans. 40A, 176–184 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshinori Nishida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations