Advertisement

Fabrication by Squeeze Casting

  • Yoshinori Nishida
Chapter

Abstract

The history of squeeze casting as a fabrication process for MMCs is briefly described in this chapter. Squeeze casting is one of the liquid state fabrication techniques. We can learn essentials of the fabrication of composites from studying squeeze casting, because, during squeeze casting, mechanical energy is converted into interface energy at the reinforcement/matrix interface. This energy conversion is economical and efficient and means that composites can be fabricated with minimum energy using squeeze casting. In this chapter, the threshold pressure equation for infiltration into preforms is introduced, and the infiltration energy, effect of preform preheat temperature, and microscopic phenomena occurring during infiltration of molten metal are discussed theoretically.

Keywords

Molten Metal High Hydrostatic Pressure Threshold Pressure Squeeze Casting Preheat Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Suzuki, S., Ochiai, M., Itoh, M., Shirayanagi, I., Awano, T.: Effect of high pressure applied during the solidification of alloys (I), Al-Si binary system. Rep. Natl. Ind. Res. Inst. Nagoya 10, 299–307 (1961)Google Scholar
  2. 2.
    Suzuki, S., Ochiai, M., Shirayanagi, I., Itoh, M., Kurahashi, S., Awano, T.: Effect of high pressure applied during the solidification of alloys (II), Al-Si binary system. Rep. Natl. Ind. Res. Inst. Nagoya 11, 10–614 (1962)Google Scholar
  3. 3.
    Nishida, Y., Matsubara, H., Shirayanagi, I., Suzuki, S.: Fundamental study on the squeeze casting. Bull. Jpn. Inst. Met. 19, 895–902 (1980)CrossRefGoogle Scholar
  4. 4.
    Suzuki, S., Shirayanagi, I., Izawa, N., Nishida, Y., Ochiai, M.: 31st Fall Meeting of Japan Institute of Light Metals, p. 23 (1966). PreprintGoogle Scholar
  5. 5.
    Suzuki, S., Nishida, Y., Shirayanagi, I., Izawa, N., Matsubara, H.: Segregation in aluminium alloys solidified under high pressure. Aluminium 59, 544–546 (1983)Google Scholar
  6. 6.
    Imagawa, K., Nagata, S., Kitahara, A., Akiyama, S., Ueno, H.: 41st Fall Meeting of Japan Institute of Light Metals, p. 1 (1971). Preprint. How to process shirasu balloon-metal composite. Jpn. Inst. Light Met. 23, 282–284 (1973)Google Scholar
  7. 7.
    Suzuki, S., Shirayanagi, I., Matsubara, H., Izawa, N., Kobayashi, N.: Aluminum/glass-fiber composites by squeeze casting (i) (Fabrication condition). In: 52nd Spring Meeting of Japan Institute of Light Metals, p. 3 (1977). PreprintGoogle Scholar
  8. 8.
    Nakata, E., Kagawa, Y.: Evaluation of the toughness of high volume fraction W/Al composites. J. Mater. Sci. Lett. 3, 968–970 (1984)CrossRefGoogle Scholar
  9. 9.
    Kagawa, Y., Oishi, Y., Yoshida, S., Nakata, E.: Workability of helical fiber reinforced composite metal. J. Jpn. Soc. Compos. Mater. 7, 140–146 (1981)CrossRefGoogle Scholar
  10. 10.
    Nakata, E., Kagawa, Y., Terao, H.: Fabrication and properties of tubular type composite by squeeze casting method. J. Jpn. Soc. Compos. Mater. 9, 115–117 (1983)CrossRefGoogle Scholar
  11. 11.
    Kagawa, Y.: Application of casting technology to fiber reinforced metals. Imono (J. Jpn. Foundry Eng. Soc.) 58, 614–621 (1986)Google Scholar
  12. 12.
    Kagawa, Y.: Fiber Reinforced Metals, p. 147. CMC, Tokyo (1985) (in Japanese)Google Scholar
  13. 13.
    Towata, S., Yamada, S.: Interaction between SiC fibers and aluminum alloys. J. Jpn. Inst. Met. 47, 159–165 (1983)Google Scholar
  14. 14.
    Towata, S., Ikuno, H., Yamada, S.: Mechanical properties of carbon fiber-reinforced aluminum alloys with whiskers and particulates of silicon-carbide. Trans. JIM 29, 314–321 (1988)Google Scholar
  15. 15.
    Nishida, Y., Imai, T., Yamada, M., Matsubara, H., Shirayanagi, I.: Fabrication of potassium titanate whisker/aluminum composites and some their properties. J. Jpn. Inst. Light Met. 38, 515–521 (1988)CrossRefGoogle Scholar
  16. 16.
    Matsubara, H., Nishida, Y., Shirayanagi, I., Yamada, M.: Fabrication of silicon nitride whisker/aluminum alloy composites and some their properties. J. Jpn. Inst. Light Met. 39, 338–343 (1989)CrossRefGoogle Scholar
  17. 17.
    Suganuma, K., Sasaki, G., Fujita, T., Suzuki, N.: Interfacial reaction between aluminum borate whisker and AC8A and 6061 aluminum alloys. J. Jpn. Inst. Light Met. 41, 297–303 (1991)CrossRefGoogle Scholar
  18. 18.
    Saito, N., Nakanishi, M., Nishida, Y.: Effect of heat treatment on the mechanical properties of aluminum-borate whisker reinforced 6061 aluminum alloy. J. Jpn. Inst. Light Met. 44, 86–90 (1994)CrossRefGoogle Scholar
  19. 19.
    Kim, J.-s., Sugamata, M., Kaneko, J.: Effect of hot extrusion on the mechanical properties of SiC whisker/AZ91 magnesium alloy composites. J. Jpn. Inst. Met. 55, 521–528 (1991)Google Scholar
  20. 20.
    Kim, J.-s., Kaneko, J., Sugamata, M.: High temperature deformation of SiC whisker/AZ91 magnesium alloy and SiC whisker/2324 aluminum alloy composites. J. Jpn. Inst. Met. 56, 819–827 (1992)Google Scholar
  21. 21.
    Donomoto, T., Miura, N., Funatani, K., Miyake, N.: Ceramic fiber reinforced piston for high performance diesel engines. SAE Paper No. 830252 (1983)Google Scholar
  22. 22.
    Hayashi, T., Ushio, H., Ebisawa, M.: The properties of hybrid fiber reinforced metal and its application for engine block. SAE Paper No. 890557 (1989). Wear properties of hybrid fiber reinforced aluminum matrix composites and application to an automotive engine block. J. Jpn. Inst. Light Met. 40, 787–792 (1990)Google Scholar
  23. 23.
    Komatsubara, T., Okajima, M., Koyasukata, Y., Hoshino, H.: Sanyo Tech. Rev. 20, 107 (1988)Google Scholar
  24. 24.
    Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  25. 25.
    Clyne, T.W., Bader, M.G., Cappleman, G.R., Hubert, P.A.: The use of a δ-alumina fibre for metal-matrix composites. J. Mater. Sci. 20, 85–96 (1985)CrossRefGoogle Scholar
  26. 26.
    Lacoste, E., Aboulfatah, M., Danis, M., Girot, F.: Numerical simulation of the infiltration of fibrous preforms by a pure metal. Metall. Trans. 24A, 2667–2678 (1993)CrossRefGoogle Scholar
  27. 27.
    Carman, P.C.: Capillary rise and capillary movement of moisture in fine sands. Soil Sci. 52, 1–14 (1941)CrossRefGoogle Scholar
  28. 28.
    White, L.R.: Capillary rise in powders. J. Colloid Interface Sci. 90, 536–538 (1982)CrossRefGoogle Scholar
  29. 29.
    Mortensen, A., Cornie, J.A.: On the infiltration of metal matrix composites. Metall. Trans. 18A, 1160–1163 (1987)CrossRefGoogle Scholar
  30. 30.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Higashi, M., Niimi, I.: Influence of fiber array on the threshold pressure of infiltration in alumina fiber/aluminum composite system. J. Jpn. Inst. Light Met. 41, 325–330 (1991)CrossRefGoogle Scholar
  31. 31.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Niimi, I.: Influence of processing parameters on the threshold pressure of infiltration in alumina fiber/aluminum composite system. J. Jpn. Inst. Light Met. 41, 576–581 (1991)CrossRefGoogle Scholar
  32. 32.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Higashi, M., Niimi, I.: Threshold pressure for infiltration in mica-ceramic particle/aluminum composite. J. Jpn. Inst. Light Met. 42, 92–97 (1992)CrossRefGoogle Scholar
  33. 33.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mohri, N., Niimi, I., Satoh, M.: Ultrasonic infiltration in alumina particle/molten aluminum system assisted by exothermic reaction of titanium aluminide formation. J. Jpn. Inst. Met. 57, 81–87 (1993)Google Scholar
  34. 34.
    Oh, S.-Y., Cornie, J.A., Russell, K.C.: Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques. Metall. Trans. 20A, 527–532 (1989)CrossRefGoogle Scholar
  35. 35.
    Oh, S.-Y., Cornie, J.A., Russell, K.C.: Wetting of ceramic particulates with liquid aluminum alloys: Part II. Study of wetting. Metall. Trans. 20A, 533–541 (1989)CrossRefGoogle Scholar
  36. 36.
    Nagata, S., Matsuda, K.: Effects of particle preheating temperature on the length of metal-particle composite in pressure casting. Imono (J. Jpn. Foundry Eng. Soc.) 53, 300–304 (1981)Google Scholar
  37. 37.
    Nagata, S., Matsuda, K.: Pressure casting conditions of metal-hybrid particle composites and their applications. Imono 54, 657–663 (1982)Google Scholar
  38. 38.
    Nagata, S., Matsuda, K.: Effects of some factors on the critical preheating temperature of particles in producing metal-particle composites by pressure casting. Imono 53, 686–691 (1981)Google Scholar
  39. 39.
    Nagata, S., Matsuda, K.: On the condition of the pressure infiltration method for metal composites. Bull. Jpn. Inst. Met. 25, 1026–1033 (1986)CrossRefGoogle Scholar
  40. 40.
    Nagata, S., Kitahara, A., Akiyama, S., Ueno, H.: Making metal composite by pressure casting. AFS Trans. 85–08, 49–54 (1985)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshinori Nishida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations