Skip to main content

Fabrication Processes for Composites

  • Chapter
  • First Online:
Introduction to Metal Matrix Composites

Abstract

Many processes have been developed for the fabrication of metal matrix composites from constituent materials. These fabrication processes are classified into four categories: solid state fabrication technique, liquid state fabrication technique, gas state fabrication technique and in situ processing. Recent developments in the major processes are introduced and their characteristic features are described. Common phenomena of these processes are discussed in fundamental terms to obtain a systematic understanding of fabrication processes. Each fabrication process is then discussed from the viewpoint of energy consumption. The most important aspect of composite fabrication is making interfaces with good bonding between the matrix metal and the reinforcements, without degradation by chemical reaction. Usually, the reinforcement/matrix interface is formed by conversion from mechanical energy to interface energy. These important points are discussed in more detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishida, Y.: Development of pressure infiltration method for fabrication of metal matrix composites. Materia Jpn. 36, 40–46 (1997)

    Article  Google Scholar 

  2. Rocher, J.P., Quenisset, J.M., Naslain, R.: Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment: application to composite material casting. J. Mater. Sci. 24, 2697–2703 (1989)

    Article  Google Scholar 

  3. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mori, N., Niimi, I., Sato, M.: Ultrasonic infiltration in alumina particle/molten aluminum system assisted by exothermic reaction of titanium aluminide formation. J. Jpn. Inst. Met. 57, 81–87 (1993)

    Google Scholar 

  4. Andrews, R.M., Mortensen, A.: Lorentz-force-driven infiltration by aluminum. Mater. Sci. Eng. A 144, 165–168 (1991)

    Article  Google Scholar 

  5. Irmann, R.: On a new sintered aluminum product with high strength at elevated temperatures. Leichtmetall 3, 21–25 (1950)

    Google Scholar 

  6. Benjamin, J.S.: Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943–2951 (1970)

    Google Scholar 

  7. Benjamin, J.S., Bomford, M.J.: Dispersion strengthened aluminum made by mechanical alloying. Metall. Trans. 8A, 1301–1305 (1977)

    Article  Google Scholar 

  8. Horiuch, R., Kohara, Y.: Aluminum alloy made by mechanical alloying and fiber reinforced aluminum. J. Jpn. Inst. Light Met. 32, 688–695 (1982)

    Article  Google Scholar 

  9. Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Thermal and mechanical properties of VGCF-containing aluminum. Trans. Jpn. Soc. Mech. Eng. A 74, 655–661 (2008)

    Article  Google Scholar 

  10. Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Effect of CNT addition on thermal properties of VGCF/aluminum composites. Trans. Jpn. Soc. Mech. Eng. A 75, 27–33 (2009)

    Google Scholar 

  11. Tokita, M.: Trend in advanced SPS spark plasma sintering systems and technology. J. Soc. Powder Technol. Jpn. 30, 790–804 (1993)

    Article  Google Scholar 

  12. Ueno T, Yoshioka H.: Japanese Patent JP 4441768

    Google Scholar 

  13. Hikosaka, T., Miki, K., Nishida, Y.: Mechanical properties of aluminum-alumina particle composites fabricated by vortex method. Imono (J Jpn. Foundry Eng. Soc.) 61, 780–786 (1989)

    Google Scholar 

  14. Badia, F.A., Rohatgi, P.K.: Dispersion of graphite particles in aluminium castings through injection of melt. Trans. AFS 77, 402–406 (1969)

    Google Scholar 

  15. Suwa, M., Komuro, K., Soeno, K.: Mechanical properties and wear resistance of graphite-dispersed Al–Si alloys. J. Jpn. Inst. Met. 40, 1074–1081 (1976)

    Google Scholar 

  16. Lim, S.-w., Cho, T.: Effect of alloying elements on SiC particulate dispersion behavior in molten magnesium. J. Jpn. Inst. Met. 56, 210–217 (1992)

    Google Scholar 

  17. Lim, S.-w., Cho, T.: Mechanical properties of SiC particulate reinforced magnesium matrix composites fabricated by melt stirring method. J. Jpn. Inst. Met. 56, 1101–1107 (1992)

    Google Scholar 

  18. Lim, S.-w., Cho, T.: Effect of alloying elements on particulate dispersion behavior and mechanical properties in TiC particulate reinforced magnesium matrix composites. J. Jpn. Inst. Light Met. 42, 772–778 (1992)

    Article  Google Scholar 

  19. Spencer, D.B., Mehrabian, R., Flemings, M.C.: Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans. 3, 1925–1932 (1972)

    Article  Google Scholar 

  20. Flemings, M.C., Mehrabian, R.: Casting in the liquid–solid region. Trans. AFS 81, 81–88 (1973)

    Google Scholar 

  21. Flemings, M.C.: Behavior of metal alloys in the semisolid state. Metall. Mater. Trans. 22A, 957–981 (1991)

    Article  Google Scholar 

  22. Nannba, A.: Semi-solid metal processing. J. Jpn. Inst. Light Met. 45, 346–354 (1995)

    Article  Google Scholar 

  23. Vives, C.: Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metall. Mater. Trans. 23B, 189–206 (1992)

    Article  Google Scholar 

  24. Ichikawa, R.: Present status of rheocast process. Tetsu-to-Hagane 74, 51–60 (1988)

    Google Scholar 

  25. Ichikawa, R., Miwa, K.: Apparent viscosity and structure in partially solidified Al–Cu alloys. J. Jpn. Inst. Met. 42, 1023–1028 (1978)

    Google Scholar 

  26. Mori, N., Ohgi, K., Matsuda, K.: On the apparent viscosity and structure of partially solidified Al–Cu alloys under stirring. J. Jpn. Inst. Met. 48, 936–944 (1984)

    Google Scholar 

  27. Shibuya, A., Arihara, K., Nakamura, Y.: Measurement of apparent viscosity of ferrous and non-ferrous alloys in liquid/solid coexisting state-Fe–C, Sn–Pb, Al–Cu and Fe–Cr–Ni–C alloys. Tetsu-to-Hagane 66, 1550–1556 (1980)

    Google Scholar 

  28. Hirai, M., Takebayashi, K., Yoshikawa, Y., Yamaguchi, R.: Apparent viscosity of semi-solid metals. Tetsu-to-Hagane 78, 902–909 (1992)

    Google Scholar 

  29. Nishio, T., Kobayashi, K., Miwa, K., Ozaki, K., Asano, S.: Effect of rotor shape on flow slurry in compocasting process. Rep. Natl. Ind. Res. Inst. Nagoya Jpn. 44, 75–81 (1995)

    Google Scholar 

  30. Sato, A., Mehrabian, R.: Aluminum matrix composites: fabrication and properties. Metall. Trans. 7B, 443–451 (1976)

    Article  Google Scholar 

  31. Miwa, K.: Fabrication of SiCp reinforced aluminum matrix composites by compocasting process. Imono (J. Jpn. Foundry Eng. Soc.) 62, 423–428 (1990)

    Google Scholar 

  32. Nagelberg, A.S., Antolin, S., Urquhart, A.W.: Formation of Al2O3/metal composites by the directed oxidation of molten aluminum–magnesium–silicon alloys: part II, growth kinetics. J. Am. Ceram. Soc. 75, 455–462 (1992)

    Article  Google Scholar 

  33. Nakanishi, H., Tsunekawa, Y., Mohri, N., Okumiya, M., Niimi, I.: Ultrasonic infiltration in alumina particle/molten aluminum system. J Jpn. Inst. Light Met. 43, 14–19 (1993)

    Article  Google Scholar 

  34. Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mohri, N.: Ultrasonic infiltration in alumina fiber/molten aluminum system. Mater. Trans. JIM 34, 62–68 (1993)

    Article  Google Scholar 

  35. Deming, Y., Xinfang, Y., Jin, P.: Continuous yarn fibre-reinforced aluminium composites prepared by the ultrasonic liquid infiltration method. J. Mater. Sci. Lett. 12, 252–253 (1993)

    Article  Google Scholar 

  36. Cheng, H.M., Lin, Z.H., Zhou, B.L., Zhen, Z.G., Kobayashi, K., Uchiyama, Y.: Preparation of carbon fibre reinforced aluminum via ultrasonic liquid infiltration technique. Mater. Sci. Technol. 9, 609–614 (1993)

    Article  Google Scholar 

  37. Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Amanuma, S., Jin, P., Yoshida, M.: Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 28–33 (2006)

    Article  Google Scholar 

  38. Matsunaga, T., Ogata, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 226–232 (2006)

    Article  Google Scholar 

  39. Matsunaga, T., Ogata, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method. Composites Part A 38, 771–778 (2007)

    Article  Google Scholar 

  40. Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration. Composites Part A 38, 1902–1911 (2007)

    Article  Google Scholar 

  41. Mizoguchi, I., Yamaguchi, S., Yachi, S., Yoshida, M.: Influence of high temperature holding on tensile strength of pitch-based carbon fiber reinforced Al–Mg alloy composites fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 60, 396–402 (2010)

    Article  Google Scholar 

  42. Yamaguchi, S., Mikuni, J., Mizoguchi, I., Matsunaga, T., Shinozaki, K., Yoshida, M.: Influence of high temperature holding on tensile strength of PAN-based carbon fiber reinforced aluminum–magnesium alloy composites fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 59, 241–247 (2009)

    Article  Google Scholar 

  43. Mikuni, J., Nonokawa, K., Matsunaga, T., Shinozaki, K., Yoshida, M.: Influence of interfacial chemical reaction for tensile strength of carbon fiber reinforced aluminum–magnesium alloy composites. J. Jpn. Inst. Light Met. 58, 27–32 (2008)

    Article  Google Scholar 

  44. Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Amanuma, S., Yoshida, M.: Effect of magnesium content on tensile strength of carbon-fiber-reinforced aluminum–magnesium alloy composite wires fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 105–111 (2006)

    Article  Google Scholar 

  45. Solzbacher, F.: Physical vapor deposition. In: Semiconductor Manufacturing Handbook. McGraw-Hill, New York (2005) (Chapter 13)

    Google Scholar 

  46. Goto, S., Mori, K., Yoshinaga, H.: High-temperature hardness of dispersion-hardened Ni–SiO2 alloys made by internal oxidation method. J. Jpn. Inst. Met. 46, 764–772 (1982)

    Google Scholar 

  47. Matsuda, N., Matsuura, K.: Work hardening of a dispersion hardened Ni–TiO2 alloy. J. Jpn. Inst. Met. 48, 362–370 (1984)

    Google Scholar 

  48. Chalmers, B.: Principles of Solidification, p. 204. Wiley, New York (1964)

    Google Scholar 

  49. Flemings, M.C.: Solidification Processing, p. 94. McGraw-Hill Book Co., New York (1974)

    Google Scholar 

  50. Lemkey, F.D., Hertzberg, R.W., Ford, J.A.: The microstructure, crystallography and mechanical behavior of unidirectionally solidified Al–Al3Ni eutectic. Trans. AIME 233, 334–341 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nishida, Y. (2013). Fabrication Processes for Composites. In: Introduction to Metal Matrix Composites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54237-7_2

Download citation

Publish with us

Policies and ethics