Advertisement

Fabrication Processes for Composites

  • Yoshinori Nishida
Chapter

Abstract

Many processes have been developed for the fabrication of metal matrix composites from constituent materials. These fabrication processes are classified into four categories: solid state fabrication technique, liquid state fabrication technique, gas state fabrication technique and in situ processing. Recent developments in the major processes are introduced and their characteristic features are described. Common phenomena of these processes are discussed in fundamental terms to obtain a systematic understanding of fabrication processes. Each fabrication process is then discussed from the viewpoint of energy consumption. The most important aspect of composite fabrication is making interfaces with good bonding between the matrix metal and the reinforcements, without degradation by chemical reaction. Usually, the reinforcement/matrix interface is formed by conversion from mechanical energy to interface energy. These important points are discussed in more detail in this chapter.

Keywords

Contact Angle Matrix Metal Molten Metal Spark Plasma Sinter Ultrasonic Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nishida, Y.: Development of pressure infiltration method for fabrication of metal matrix composites. Materia Jpn. 36, 40–46 (1997)CrossRefGoogle Scholar
  2. 2.
    Rocher, J.P., Quenisset, J.M., Naslain, R.: Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment: application to composite material casting. J. Mater. Sci. 24, 2697–2703 (1989)CrossRefGoogle Scholar
  3. 3.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mori, N., Niimi, I., Sato, M.: Ultrasonic infiltration in alumina particle/molten aluminum system assisted by exothermic reaction of titanium aluminide formation. J. Jpn. Inst. Met. 57, 81–87 (1993)Google Scholar
  4. 4.
    Andrews, R.M., Mortensen, A.: Lorentz-force-driven infiltration by aluminum. Mater. Sci. Eng. A 144, 165–168 (1991)CrossRefGoogle Scholar
  5. 5.
    Irmann, R.: On a new sintered aluminum product with high strength at elevated temperatures. Leichtmetall 3, 21–25 (1950)Google Scholar
  6. 6.
    Benjamin, J.S.: Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943–2951 (1970)Google Scholar
  7. 7.
    Benjamin, J.S., Bomford, M.J.: Dispersion strengthened aluminum made by mechanical alloying. Metall. Trans. 8A, 1301–1305 (1977)CrossRefGoogle Scholar
  8. 8.
    Horiuch, R., Kohara, Y.: Aluminum alloy made by mechanical alloying and fiber reinforced aluminum. J. Jpn. Inst. Light Met. 32, 688–695 (1982)CrossRefGoogle Scholar
  9. 9.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Thermal and mechanical properties of VGCF-containing aluminum. Trans. Jpn. Soc. Mech. Eng. A 74, 655–661 (2008)CrossRefGoogle Scholar
  10. 10.
    Imanishi, T., Sasaki, K., Katagiri, K., Kakitsuji, A.: Effect of CNT addition on thermal properties of VGCF/aluminum composites. Trans. Jpn. Soc. Mech. Eng. A 75, 27–33 (2009)Google Scholar
  11. 11.
    Tokita, M.: Trend in advanced SPS spark plasma sintering systems and technology. J. Soc. Powder Technol. Jpn. 30, 790–804 (1993)CrossRefGoogle Scholar
  12. 12.
    Ueno T, Yoshioka H.: Japanese Patent JP 4441768Google Scholar
  13. 13.
    Hikosaka, T., Miki, K., Nishida, Y.: Mechanical properties of aluminum-alumina particle composites fabricated by vortex method. Imono (J Jpn. Foundry Eng. Soc.) 61, 780–786 (1989)Google Scholar
  14. 14.
    Badia, F.A., Rohatgi, P.K.: Dispersion of graphite particles in aluminium castings through injection of melt. Trans. AFS 77, 402–406 (1969)Google Scholar
  15. 15.
    Suwa, M., Komuro, K., Soeno, K.: Mechanical properties and wear resistance of graphite-dispersed Al–Si alloys. J. Jpn. Inst. Met. 40, 1074–1081 (1976)Google Scholar
  16. 16.
    Lim, S.-w., Cho, T.: Effect of alloying elements on SiC particulate dispersion behavior in molten magnesium. J. Jpn. Inst. Met. 56, 210–217 (1992)Google Scholar
  17. 17.
    Lim, S.-w., Cho, T.: Mechanical properties of SiC particulate reinforced magnesium matrix composites fabricated by melt stirring method. J. Jpn. Inst. Met. 56, 1101–1107 (1992)Google Scholar
  18. 18.
    Lim, S.-w., Cho, T.: Effect of alloying elements on particulate dispersion behavior and mechanical properties in TiC particulate reinforced magnesium matrix composites. J. Jpn. Inst. Light Met. 42, 772–778 (1992)CrossRefGoogle Scholar
  19. 19.
    Spencer, D.B., Mehrabian, R., Flemings, M.C.: Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall. Trans. 3, 1925–1932 (1972)CrossRefGoogle Scholar
  20. 20.
    Flemings, M.C., Mehrabian, R.: Casting in the liquid–solid region. Trans. AFS 81, 81–88 (1973)Google Scholar
  21. 21.
    Flemings, M.C.: Behavior of metal alloys in the semisolid state. Metall. Mater. Trans. 22A, 957–981 (1991)CrossRefGoogle Scholar
  22. 22.
    Nannba, A.: Semi-solid metal processing. J. Jpn. Inst. Light Met. 45, 346–354 (1995)CrossRefGoogle Scholar
  23. 23.
    Vives, C.: Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metall. Mater. Trans. 23B, 189–206 (1992)CrossRefGoogle Scholar
  24. 24.
    Ichikawa, R.: Present status of rheocast process. Tetsu-to-Hagane 74, 51–60 (1988)Google Scholar
  25. 25.
    Ichikawa, R., Miwa, K.: Apparent viscosity and structure in partially solidified Al–Cu alloys. J. Jpn. Inst. Met. 42, 1023–1028 (1978)Google Scholar
  26. 26.
    Mori, N., Ohgi, K., Matsuda, K.: On the apparent viscosity and structure of partially solidified Al–Cu alloys under stirring. J. Jpn. Inst. Met. 48, 936–944 (1984)Google Scholar
  27. 27.
    Shibuya, A., Arihara, K., Nakamura, Y.: Measurement of apparent viscosity of ferrous and non-ferrous alloys in liquid/solid coexisting state-Fe–C, Sn–Pb, Al–Cu and Fe–Cr–Ni–C alloys. Tetsu-to-Hagane 66, 1550–1556 (1980)Google Scholar
  28. 28.
    Hirai, M., Takebayashi, K., Yoshikawa, Y., Yamaguchi, R.: Apparent viscosity of semi-solid metals. Tetsu-to-Hagane 78, 902–909 (1992)Google Scholar
  29. 29.
    Nishio, T., Kobayashi, K., Miwa, K., Ozaki, K., Asano, S.: Effect of rotor shape on flow slurry in compocasting process. Rep. Natl. Ind. Res. Inst. Nagoya Jpn. 44, 75–81 (1995)Google Scholar
  30. 30.
    Sato, A., Mehrabian, R.: Aluminum matrix composites: fabrication and properties. Metall. Trans. 7B, 443–451 (1976)CrossRefGoogle Scholar
  31. 31.
    Miwa, K.: Fabrication of SiCp reinforced aluminum matrix composites by compocasting process. Imono (J. Jpn. Foundry Eng. Soc.) 62, 423–428 (1990)Google Scholar
  32. 32.
    Nagelberg, A.S., Antolin, S., Urquhart, A.W.: Formation of Al2O3/metal composites by the directed oxidation of molten aluminum–magnesium–silicon alloys: part II, growth kinetics. J. Am. Ceram. Soc. 75, 455–462 (1992)CrossRefGoogle Scholar
  33. 33.
    Nakanishi, H., Tsunekawa, Y., Mohri, N., Okumiya, M., Niimi, I.: Ultrasonic infiltration in alumina particle/molten aluminum system. J Jpn. Inst. Light Met. 43, 14–19 (1993)CrossRefGoogle Scholar
  34. 34.
    Nakanishi, H., Tsunekawa, Y., Okumiya, M., Mohri, N.: Ultrasonic infiltration in alumina fiber/molten aluminum system. Mater. Trans. JIM 34, 62–68 (1993)CrossRefGoogle Scholar
  35. 35.
    Deming, Y., Xinfang, Y., Jin, P.: Continuous yarn fibre-reinforced aluminium composites prepared by the ultrasonic liquid infiltration method. J. Mater. Sci. Lett. 12, 252–253 (1993)CrossRefGoogle Scholar
  36. 36.
    Cheng, H.M., Lin, Z.H., Zhou, B.L., Zhen, Z.G., Kobayashi, K., Uchiyama, Y.: Preparation of carbon fibre reinforced aluminum via ultrasonic liquid infiltration technique. Mater. Sci. Technol. 9, 609–614 (1993)CrossRefGoogle Scholar
  37. 37.
    Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Amanuma, S., Jin, P., Yoshida, M.: Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 28–33 (2006)CrossRefGoogle Scholar
  38. 38.
    Matsunaga, T., Ogata, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 226–232 (2006)CrossRefGoogle Scholar
  39. 39.
    Matsunaga, T., Ogata, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method. Composites Part A 38, 771–778 (2007)CrossRefGoogle Scholar
  40. 40.
    Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Yoshida, M.: Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration. Composites Part A 38, 1902–1911 (2007)CrossRefGoogle Scholar
  41. 41.
    Mizoguchi, I., Yamaguchi, S., Yachi, S., Yoshida, M.: Influence of high temperature holding on tensile strength of pitch-based carbon fiber reinforced Al–Mg alloy composites fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 60, 396–402 (2010)CrossRefGoogle Scholar
  42. 42.
    Yamaguchi, S., Mikuni, J., Mizoguchi, I., Matsunaga, T., Shinozaki, K., Yoshida, M.: Influence of high temperature holding on tensile strength of PAN-based carbon fiber reinforced aluminum–magnesium alloy composites fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 59, 241–247 (2009)CrossRefGoogle Scholar
  43. 43.
    Mikuni, J., Nonokawa, K., Matsunaga, T., Shinozaki, K., Yoshida, M.: Influence of interfacial chemical reaction for tensile strength of carbon fiber reinforced aluminum–magnesium alloy composites. J. Jpn. Inst. Light Met. 58, 27–32 (2008)CrossRefGoogle Scholar
  44. 44.
    Matsunaga, T., Matsuda, K., Hatayama, T., Shinozaki, K., Amanuma, S., Yoshida, M.: Effect of magnesium content on tensile strength of carbon-fiber-reinforced aluminum–magnesium alloy composite wires fabricated by ultrasonic infiltration method. J. Jpn. Inst. Light Met. 56, 105–111 (2006)CrossRefGoogle Scholar
  45. 45.
    Solzbacher, F.: Physical vapor deposition. In: Semiconductor Manufacturing Handbook. McGraw-Hill, New York (2005) (Chapter 13)Google Scholar
  46. 46.
    Goto, S., Mori, K., Yoshinaga, H.: High-temperature hardness of dispersion-hardened Ni–SiO2 alloys made by internal oxidation method. J. Jpn. Inst. Met. 46, 764–772 (1982)Google Scholar
  47. 47.
    Matsuda, N., Matsuura, K.: Work hardening of a dispersion hardened Ni–TiO2 alloy. J. Jpn. Inst. Met. 48, 362–370 (1984)Google Scholar
  48. 48.
    Chalmers, B.: Principles of Solidification, p. 204. Wiley, New York (1964)Google Scholar
  49. 49.
    Flemings, M.C.: Solidification Processing, p. 94. McGraw-Hill Book Co., New York (1974)Google Scholar
  50. 50.
    Lemkey, F.D., Hertzberg, R.W., Ford, J.A.: The microstructure, crystallography and mechanical behavior of unidirectionally solidified Al–Al3Ni eutectic. Trans. AIME 233, 334–341 (1965)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Yoshinori Nishida
    • 1
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan

Personalised recommendations