Skip to main content

Development of Hydroxy Thiourea Catalysts

  • Chapter
  • First Online:
  • 671 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Two novel bifunctional thioureas bearing hydroxy groups were developed. Initially, asymmetric Michael reactions of γ-hydroxyenones and organoboronic acids were examined using these catalysts. These reactions gave low yields due to the competitive, undesired oxy-Michael reaction when thiourea catalysts bearing a basic amino group were employed. In contrast, with the use of newly designed iminophenol-type catalysts, desired asymmetric Michael reactions proceed smoothly and provide vinyl addition products in high yields and ee’s. It was found that both the hydroxy groups in the substrates and the catalyst were necessary for effective catalysis in these reactions. Subsequently, the first highly catalytic, enantioselective Petasis-type reaction of N-aryl-α-iminoamides was developed using novel hydroxyether-type thioureas as catalysts. This reaction provides rapid access to unnatural vinyl glycine derivatives in high optical purity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Okino T, Hoashi Y, Takemoto YJ (2003) Am Chem Soc 125:12672

    Article  CAS  Google Scholar 

  2. Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y (2004) J Am Chem Soc 6:625

    CAS  Google Scholar 

  3. Okino T, Nakamura S, Furukawa T, Takemoto Y (2004) Org Lett 6:625

    Article  CAS  Google Scholar 

  4. Xu X, Furukawa T, Okino T, Miyabe H, Takemoto Y (2006) Chem Eur J 12:466

    Article  Google Scholar 

  5. Xie J, Yoshida K, Takasu K, Takemoto Y (2008) Tetrahedron Lett 49:6910

    Article  CAS  Google Scholar 

  6. Xu X, Yabuta T, Yuan P, Takemoto Y (2006) Synlett 137

    Google Scholar 

  7. Hu K, Wang C, Ma X, Wang Y, Zhou Z, Tang C (2009) Tetrahedron Asymmetry 20:2178

    Article  CAS  Google Scholar 

  8. Dove AP, Pratt RC, Lohmeiger BG, Waymouth RM, Hedrick JLJ (2005) Am Chem Soc 127:13798

    Article  CAS  Google Scholar 

  9. Biswas K, Woodward S (2008) Tetrahedron Asymmetr 19:1702

    Article  CAS  Google Scholar 

  10. Wang S, Ji S, Loh TJ (2007) Am Chem Soc 129:276

    Article  CAS  Google Scholar 

  11. Wang S-Y, Ji S-J, Loh T-P (2007) J Am Chem Soc 129:276

    Article  CAS  Google Scholar 

  12. Yamamoto Y, Suzuki H, Yasuda Y, Iida A, Tomioka K (2008) Tetrahedron Lett 49:4582

    Article  CAS  Google Scholar 

  13. Duguet N, Harrison-Marchand A, Maddaluno J, Tomioka K (2006) Org Lett 8:5745

    Article  CAS  Google Scholar 

  14. Miyaura N (2008) Bull Chem Soc Jpn 81:1535

    Article  CAS  Google Scholar 

  15. Hayashi T, Yamasaki K (2003) Chem Rev 103:2829

    Article  CAS  Google Scholar 

  16. Navarro C, Moreno A, Csaky AG (2009) J Org Chem 74:466

    Article  CAS  Google Scholar 

  17. Nishikawa T, Kiyomura S, Yamamoto Y, Miyaura N (2008) Synlett 2487

    Google Scholar 

  18. Gendrineau T, Chuzel O, Eijsberg H, Genet JP, Darses S (2008) Angew Chem Int Ed 47:7669

    Article  CAS  Google Scholar 

  19. Nishimura T, Nagaosa M, Hayashi T (2008) Chem Lett 37:860

    Article  CAS  Google Scholar 

  20. Wu TR, Chong JM (2007) J Am Chem Soc 129:4908

    Article  CAS  Google Scholar 

  21. Wu TR, Chong JM (2005) J Am Chem Soc 127:3244

    Article  CAS  Google Scholar 

  22. Lou S, Schaus SE (2008) J Am Chem Soc 130:6922

    Article  CAS  Google Scholar 

  23. Lou S, Moquist PM, Schaus SE (2007) J Am Chem Soc 129:15398

    Article  CAS  Google Scholar 

  24. Lou S, Moquist PM, Schaus SE (2006) J Am Chem Soc 128:12660

    Article  CAS  Google Scholar 

  25. Yamaoka Y, Miyabe H, Takemoto Y (2007) J Am Chem Soc 129:6686

    Article  CAS  Google Scholar 

  26. Petasis NA, Akrltopoulou I (1993) Tetrahedron Lett 34:583

    Article  CAS  Google Scholar 

  27. Petasis NA, Zavialov IA (1997) J Am Chem Soc 119:445

    Article  CAS  Google Scholar 

  28. Petasis NA, Zavialov IA (1998) J Am Chem Soc 120:11798

    Article  CAS  Google Scholar 

  29. Prakash GKS, Mandal M, Schweized S, Petasis NA, Olah GA (2000) Org Lett 2:3173

    Article  CAS  Google Scholar 

  30. Candeias NR, Montalbano F, Cal PMSD, Gois PMP (2010) Chem Rev 110:6169

    Article  CAS  Google Scholar 

  31. Li DR, Murugan A, Falck JR (2008) J Am Chem Soc 130:46

    Article  CAS  Google Scholar 

  32. Kim S-G (2008) During the course of the author’s investigation, a related report has appeared in the literature. Tetrahedron Lett 49:6148

    Google Scholar 

  33. Taylor MS, Jacobsen EN (2006) Angew Chem Int Ed 45:1520

    Article  CAS  Google Scholar 

  34. Doyle AG, Jacobsen EN (2007) Chem Rev 107:5713

    Article  CAS  Google Scholar 

  35. Akiyama T (2007) Chem Rev 107:5744

    Article  CAS  Google Scholar 

  36. Yu X, Wang W (2008) Chem Asian J 3:516

    Article  Google Scholar 

  37. Liu X, Lin L, Feng X (2009) Chem Commun 6145

    Google Scholar 

  38. Greatrex BW, Kimber MC, Taylor DK, Tiekink TK (2003) When less reactive nucleophiles were used, 2-phenylfuran was produced as the byproduct, and the yield of the desired products had been decreased. For the reactions of γ-hydroxy enones. J Org Chem 68:4239

    Google Scholar 

  39. Zigterman JL, Woo JCS, Walker SD, Tedrow JS, Borths CJ, Bunnel EE, Faul MM (2007) J Org Chem 72:8870

    Article  CAS  Google Scholar 

  40. Heilbron I, Jones RH, Sondheimer F (1949) J Chem Soc 604

    Google Scholar 

  41. Kunishima K, Kawachi C, Iwasaki F, Terao K, Tani S (1999) Tetrahedron Lett 40:5327

    Article  CAS  Google Scholar 

  42. Dess DB, Martin JC (1983) J Org Chem 48:4155

    Article  CAS  Google Scholar 

  43. Krause GA, Roth B (1980) J Org Chem 45:4825

    Article  Google Scholar 

  44. Mitsunobu O (1981) Synthesis 1

    Google Scholar 

  45. Parrodi CA, Moreno GE, Quintero L, Juaristi E (1998) Thetrahedron Asymmetry 9:2093

    Article  Google Scholar 

  46. Petasis NA, Zavialov IA (1997) J Am Chem Soc 119:445

    Article  CAS  Google Scholar 

  47. Petasis NA, Zavialov IA (1998) J Am Chem Soc 120:11798

    Article  CAS  Google Scholar 

  48. Prakash GKS, Mandal M, Schweized S, Petasis NA, Olah GA (2000) Org Lett 2:3173

    Article  CAS  Google Scholar 

  49. Candeias NR, Montalbano F, Cal PMSD, Gois PMP (2010) Chem Rev 110:6169

    Article  CAS  Google Scholar 

  50. McLean NJ, Tye H, Whittaker M (2004) Tetrahedron Lett 45:993

    Article  CAS  Google Scholar 

  51. Jourdan H, Gouhier G, Van Hijfte L, Angibaud P, Piettre SR (2005) Tetrahedron Lett 46:8027

    Article  CAS  Google Scholar 

  52. Klopfenstein SR, Chen JJ, Golebiowski A, Li M, Peng SX, Shao X (2000) Tetrahedron Lett 41:4835

    Article  CAS  Google Scholar 

  53. Hong Z, Liu L, Sugiyama M, Fu Y, Wong C-H (2009) J Am Chem Soc 131:8352

    Article  CAS  Google Scholar 

  54. Lou S, Schaus SE (2008) J Am Chem Soc 130:6922

    Article  CAS  Google Scholar 

  55. Lou S, Moquist PM, Schaus SE (2007) J Am Chem Soc 129:15398

    Article  CAS  Google Scholar 

  56. Yamaoka Y, Miyabe H, Takemoto Y (2007) J Am Chem Soc 129:6686

    Article  CAS  Google Scholar 

  57. Zhao L, Liao X, Li C-J (2009) Synlett 2953

    Google Scholar 

  58. Walsgrove TC, Powell L, Wells A (2002) Org Process Res Dev 6:488

    Article  CAS  Google Scholar 

  59. Samanen JM, Ali FE, Barton LS, Bondinell WE, Burgess JL, Callahan JF, Calvo RR, Chen W, Chen L, Erhard K, Feuerstein G, Heys R, Hwang S-M, Jakas DR, Keenan RM, Ku TW, Kwon C, Lee C-P, Miller WH, Newlander KA, Nichols A, Parker M, Peishoff CE, Rhodes G, Ross S, Shu A, Simpson R, Takata D, Yellin TO, Uzsinskas I, Venslavsky JW, Yuan C-K, Huffman WF (1996) J Med Chem 39:4867

    Google Scholar 

  60. Andrews SW, Seiwert S, Beigelman L, Blatt L, Buckman B (2008) WO2008141227(A1)

    Google Scholar 

  61. Banks A, Breen GF, Caine D, Carey JS, Drake C, Forth MA, Gladwin A, Guelfi S, Hayes JF, Maragni P, Morgan DO, Oxley P, Perboni A, Popkin ME, Rawlinson F, Roux G (2009) Org Process Res Dev 13:1130

    Article  CAS  Google Scholar 

  62. Georgsson J, Rosenström U, Wallinder C, Beaudry H, Plouffe B, Lindeberg G, Botros M, Nyberg F, Karlén A, Gallo-Payet N, Hallberg A (2006) Bioorg Med Chem 14:5963

    Article  CAS  Google Scholar 

  63. Endo Y, Shudo K, Furuhata K, Ogura H, Sakai S, Aimi N, Hitotsuyanagi Y, Koyama Y (1984) Chem Pharm Bull 32:358

    Article  CAS  Google Scholar 

  64. Quick J, Saha B, Driedger PE (1994) Tetrahedron Lett 35:8549

    Article  CAS  Google Scholar 

  65. Endo Y, Ohno M, Hirano M, Itami A, Shudo K (1841) J Am Chem Soc 1996:118

    Google Scholar 

  66. Miller WH, Ku TW, Ali FE, Bondinell WE, Calvo RR, Davis LD, Erhard KF, Hall LB, Huffman WF, Keenan RM, Kwon C, Newlandar KA, Ross ST, Samanen JM, Takata DT, Yuan C-K (1995) Tetrahedron Lett 36:9433

    Article  CAS  Google Scholar 

  67. Nagata R, Ae N, Tanno N (1995) Bioorg Med Chem Lett 5:1527

    Article  CAS  Google Scholar 

  68. Lombeart SD, Blanchard L, Stamford LB, Sperbeck DM, Grim MD, Jenson TM, Rodriguez HR (1994) Tetrahedron Lett 35:7513

    Article  Google Scholar 

  69. Hosokami T, Kuretani M, Higashi K, Asano M, Ohya K, Takasugi N, Mafune E, Miki T (1992) Chem Pharm Bull 40:2712

    Article  CAS  Google Scholar 

  70. Phal A, Zhang M, Török K, Kuss H, Friedrich U, Magyar Z, Szekely J, Horvath K, Brune K, Szelenyi IJ (2002) Pharmacol Exp Ther 301:738

    Article  Google Scholar 

  71. Sletten EM, Bertozzi CR (2009) Angew Chem Int Ed 48:6974

    Article  CAS  Google Scholar 

  72. Link AJ, Mock ML, Tirrell DA (2003) Curr Opin Biotechnol 14:603

    Article  CAS  Google Scholar 

  73. Wang L, Schultz PG (2005) Angew Chem Int Ed 44:34

    Article  CAS  Google Scholar 

  74. Alam J, Keller TH, Loh T-P (2010) J Am Chem Soc 132:9546

    Article  CAS  Google Scholar 

  75. Gilmore JM, Scheck RA, Esser-Kahn AP, Joshi NS, Francis MB (2006) Angew Chem Int Ed 45:5307

    Article  CAS  Google Scholar 

  76. Trova MP, Gauuan PJF, Pechulis AD, Bubb SM, Bocckino SB, Crapo JD, Day BJ (2003) Bioorg Med Chem 11:2695

    Article  CAS  Google Scholar 

  77. Ibrahem I, Casas J, Cordova A (2004) Angew Chem Int Ed 43:6528

    Article  CAS  Google Scholar 

  78. Takaya J, Kagoshima H, Akiyama T (2000) Org Lett 2:1577

    Article  CAS  Google Scholar 

  79. Fustero S, Soler JG, Bartolome A, Rosello MS (2003) Org Lett 5:2707

    Article  CAS  Google Scholar 

  80. Verkade JMM, Hemert LJC, Quaedflieg PJLM, Alsters PL, Delfta FL, Rutjes FPJT (2006) Tetrahedron Lett 47:8109

    Article  CAS  Google Scholar 

  81. Brown HC, Kim SC, Krishnamurthy S (1980) J Org Chem 45:1

    Article  CAS  Google Scholar 

  82. Kajigaeshi S, Kakinami T, Watanabe F, Okamoto T (1989) Bull Chem Soc Jpn 62:1349

    Article  CAS  Google Scholar 

  83. Alatorre-Santamaría S, Gotor-Fernández V, Gotor V (2010) Tetrahedron Asymmetry 21:2307

    Google Scholar 

  84. Fabio RD, Tranquillini E, Bertani B, Alvaro G, Micheli F, Sabbatini F, Pizzi MD, Pentassuglia G, Pasquarello A, Messeri T, Donati D, Ratti E, Arban R, Forno GD, Reggiani A, Barnaby RJ (2003) Bioorg Med Chem Lett 13:3863

    Article  Google Scholar 

  85. Piel M, Schirrmacher R, Hohnemann S, Hamkens W, Kohl B, Jansen M, Schmitt U, Luddens H, Dannhardt G, Rosch FJ (2003) Label Compd Radiopharm 46:645

    Article  CAS  Google Scholar 

  86. Vecchietti V, Clarke GD, Colle R, Giardina G, Petrone G, Sbacchi M (1991) J Med Chem 34:2624

    Article  CAS  Google Scholar 

  87. Andrews MD, O’Callaghan KA, Vederas JC (1997) Tetrahedron 53:8295

    Article  CAS  Google Scholar 

  88. Itaya T, Iida T, Shimizu S, Mizutani A, Morisue M, Sugimoto Y, Tachinaka M (1993) Chem Pharm Bull 41:252

    Article  CAS  Google Scholar 

  89. Berkessel A, Glaubitz K, Lex J Eur J Org Chem 2002:2948

    Google Scholar 

  90. Overman LE, Sugai S (1985) J Org Chem 50:4154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Inokuma .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Inokuma, T. (2013). Development of Hydroxy Thiourea Catalysts. In: Development of Novel Hydrogen-Bond Donor Catalysts. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54231-5_3

Download citation

Publish with us

Policies and ethics