Skip to main content

Molecular Aspects of Evolution and Diversity of Animal Photoreception

  • Chapter
  • First Online:
Evolution and Senses

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

  • 1284 Accesses

Abstract

Animals utilize light from the environment as various information sources for functions such as vision, photoentrainment of circadian and circannual rhythms, photoperiodism and environmental body color changes. For these purposes, animals have various photoreceptor cells having highly diversified G protein-­coupled receptors (GPCRs) called opsins. Opsins contain seven transmembrane a-helical domains, the structural motif typical of the GPCRs, and intrinsic ligand retinal as a light-absorbing chromophore. Most opsins contain 11-cis retinal as their chromophores, and light causes a conformational change of the protein moiety through cis–trans isomerization of the chromophore, which leads to the activation of a G protein-mediated signal transduction cascade in the photoreceptor cells. The most extensively studied opsins are the visual pigments present in photoreceptor cells of vertebrate and invertebrate retinas. Here, we review the visual transduction process in vertebrate and invertebrate photoreceptor cells, and the functional diversity of opsins and phototransduction systems in various photoreceptor cells. In addition, the molecular mechanisms underlying the evolution and diversity of opsins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18(6):881–887

    Article  PubMed  CAS  Google Scholar 

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47(7–8):563–571

    PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306(5697):869–871

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw S, Snyder SH (1997) Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci 17(21):8083–8092

    PubMed  CAS  Google Scholar 

  • Blackshaw S, Snyder SH (1999) Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci 19(10):3681–3690

    PubMed  CAS  Google Scholar 

  • Bownds D (1967) Site of attachment of retinal in rhodopsin. Nature 216(5121):1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HK (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28(3):256–260

    Article  PubMed  CAS  Google Scholar 

  • Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397(6716):255–259

    Article  PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Cowing JA, Beazley LD, Hunt DM, Arrese CA (2007) Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol 17(5):R161–R163

    Article  PubMed  CAS  Google Scholar 

  • del Pilar Gomez M, Nasi E (1995) Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade. Neuron 15(3):607–618

    Article  PubMed  Google Scholar 

  • Eakin RM (1965) Evolution of photoreceptors. Cold Spring Harb Symp Quant Biol 30:363–370

    Article  PubMed  CAS  Google Scholar 

  • Foa A, Basaglia F, Beltrami G, Carnacina M, Moretto E, Bertolucci C (2009) Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye. J Exp Biol 212(18):2918–2924

    Article  PubMed  Google Scholar 

  • Foster RG, Hankins MW (2002) Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res 21(6):507–527

    Article  PubMed  Google Scholar 

  • Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454(5):805–819

    Article  PubMed  CAS  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284 (5413):502–504

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48(8–9):707–717

    Article  PubMed  Google Scholar 

  • Gillo B, Chorna I, Cohen H, Cook B, Manistersky I, Chorev M, Arnon A, Pollock JA, Selinger Z, Minke B (1996) Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc Natl Acad Sci USA 93(24):14146–14151

    Article  PubMed  CAS  Google Scholar 

  • Gomez MP, Nasi E (2000) Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase. J Neurosci 20(14):5254–5263

    PubMed  CAS  Google Scholar 

  • Halford S, Freedman MS, Bellingham J, Inglis SL, Poopalasundaram S, Soni BG, Foster RG, Hunt DM (2001) Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43. Genomics 72(2): 203–208

    Article  PubMed  CAS  Google Scholar 

  • Halford S, Pires SS, Turton M, Zheng L, Gonzalez-Menendez I, Davies WL, Peirson SN, Garcia-Fernandez JM, Hankins MW, Foster RG (2009) VA opsin-based photoreceptors in the hypothalamus of birds. Curr Biol 19(16):1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Hara R (1967) Rhodopsin and retinochrome in the squid retina. Nature 214(5088): 573–575

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413(6852):186–193

    Article  PubMed  CAS  Google Scholar 

  • Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9(4):235–244

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Sakurai D, Ohtsuki H, Terakita A, Shichida Y, Usukura J, Kusakabe T, Tsuda M (2008) Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. J Comp Neurol 509(1):88–102

    Article  PubMed  Google Scholar 

  • Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y (1997) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci USA 94(6):2322–2326

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Kefalov V, Sakurai K, Chisaka O, Ueda Y, Onishi A, Morizumi T, Fu Y, Ichikawa K, Nakatani K, Honda Y, Chen J, Yau KW, Shichida Y (2007) Molecular properties of rhodopsin and rod function. J Biol Chem 282(9):6677–6684

    Article  PubMed  CAS  Google Scholar 

  • Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA 102(4):1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH, Williams GA, Cahill H, Nathans J (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315(5819):1723–1725

    Article  PubMed  CAS  Google Scholar 

  • Jager S, Palczewski K, Hofmann KP (1996) Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry 35(9):2901–2908

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Pandey S, Fong HK (1993) An opsin homologue in the retina and pigment epithelium. Invest Ophthalmol Vis Sci 34(13):3669–3678

    PubMed  CAS  Google Scholar 

  • Kawamura S, Tachibanaki S (2008) Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp Biochem Physiol A Mol Integr Physiol 150(4):369–377

    Article  PubMed  CAS  Google Scholar 

  • Knowles A (1976) The effects of chloride ion upon chicken visual pigments. Biochem Biophys Res Commun 73(1):56–62

    Article  PubMed  CAS  Google Scholar 

  • Kojima D, Terakita A, Ishikawa T, Tsukahara Y, Maeda A, Shichida Y (1997) A novel Go-mediated phototransduction cascade in scallop visual cells. J Biol Chem 272(37):22979–22982

    Article  PubMed  CAS  Google Scholar 

  • Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y (2011) UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One 6(10):e26388

    Article  PubMed  CAS  Google Scholar 

  • Koutalos Y, Ebrey TG, Tsuda M, Odashima K, Lien T, Park MH, Shimizu N, Derguini F, Nakanishi K, Gilson HR, Honig B (1989) Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Biochemistry 28(6):2732–2739

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84(4):1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Terakita A, Kubokawa K, Shichida Y (2002) Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett 531(3):525–528

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A (2004) Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci USA 101(17):6687–6691

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15(11):1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci USA 105(40):15576–15580

    Article  PubMed  CAS  Google Scholar 

  • Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V, Vlcek C (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci USA 105(26):8989–8993

    Article  PubMed  CAS  Google Scholar 

  • Kuwayama S, Imai H, Hirano T, Terakita A, Shichida Y (2002) Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41(51):15245–15252

    Article  PubMed  CAS  Google Scholar 

  • Le Provost F, Lillico S, Passet B, Young R, Whitelaw B, Vilotte JL (2010) Zinc finger nuclease technology heralds a new era in mammalian transgenesis. Trends Biotechnol 28(3):134–141

    Article  PubMed  CAS  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Yamashita T, Imai H, Shichida Y (2010) Covalent bond between ligand and receptor required for efficient activation in rhodopsin. J Biol Chem 285(11):8114–8121

    Article  PubMed  CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  PubMed  CAS  Google Scholar 

  • Moutsaki P, Whitmore D, Bellingham J, Sakamoto K, David-Gray ZK, Foster RG (2003) Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Brain Res Mol Brain Res 112(1–2):135–145

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453(7193):363–367

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Koyanagi M, Tsukamoto H, Terakita A (2010) Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(1):51–59

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, Fukada Y (1999) Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry 38(45):14738–14745

    Article  PubMed  CAS  Google Scholar 

  • Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, Ebihara S, Kubo Y, Yoshimura T (2010) A mammalian neural tissue opsin (opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci USA 107(34):15264–15268

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Kusakabe T, Kusakabe R, Terakita A, Shichida Y, Tsuda M (2003) Origin of the vertebrate visual cycle: genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate. J Comp Neurol 460(2): 180–190

    Article  PubMed  CAS  Google Scholar 

  • Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29(41):9746–9752

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34(3):807–814

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232(4747):193–202

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Robinson PR (2005) Cone visual pigments of aquatic mammals. Vis Neurosci 22(6):873–879

    Article  PubMed  Google Scholar 

  • Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 89(13):5932–5936

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature 372 (6501):94–97

    Article  PubMed  CAS  Google Scholar 

  • Onishi A, Hasegawa J, Imai H, Chisaka O, Ueda Y, Honda Y, Tachibana M, Shichida Y (2005) Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones. Zool Sci 22(10):1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Ooka S, Katow T, Yaguchi S, Yaguchi J, Katow H (2010) Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration. Dev Growth Differ 52(2):195–207

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov Yu A (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148(2):179–191

    Article  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213–2216

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525–527

    Article  PubMed  CAS  Google Scholar 

  • Pitt GA, Collins FD, Morton RA, Stok P (1955) Studies on rhodopsin. VIII. Retinylidenemethylamine, an indicator yellow analogue. Biochem J 59(1):122–128

    PubMed  CAS  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95(1):340–345

    Article  PubMed  CAS  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20(2):600–605

    PubMed  CAS  Google Scholar 

  • Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH (2008) Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 283(28): 19730–19738

    Article  PubMed  CAS  Google Scholar 

  • Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300(1): 461–475

    Article  PubMed  CAS  Google Scholar 

  • Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ (2004) Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. J Biol Chem 279(46):48102–48111

    Article  PubMed  CAS  Google Scholar 

  • Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9(4):719–725

    Article  PubMed  CAS  Google Scholar 

  • Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298(5601):2211–2213

    Article  PubMed  CAS  Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86(21):8309–8313

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Onishi A, Imai H, Chisaka O, Ueda Y, Usukura J, Nakatani K, Shichida Y (2007) Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J Gen Physiol 130(1):21–40

    Article  PubMed  Google Scholar 

  • Sato K, Yamashita T, Ohuchi H, Shichida Y (2011) Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry 50(48):10484–10490

    Article  PubMed  CAS  Google Scholar 

  • Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54(12):1299–1315

    Article  PubMed  CAS  Google Scholar 

  • Smallwood PM, Olveczky BP, Williams GL, Jacobs GH, Reese BE, Meister M, Nathans J (2003) Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc Natl Acad Sci USA 100(20):11706–11711

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14(10):2337–2349

    Article  PubMed  CAS  Google Scholar 

  • Solessio E, Engbretson GA (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364(6436):442–445

    Article  PubMed  CAS  Google Scholar 

  • Soni BG, Foster RG (1997) A novel and ancient vertebrate opsin. FEBS Lett 406(3):279–283

    Article  PubMed  CAS  Google Scholar 

  • Soni BG, Philp AR, Foster RG, Knox BE (1998) Novel retinal photoreceptors. Nature 394(6688): 27–28

    Article  PubMed  CAS  Google Scholar 

  • Su CY, Luo DG, Terakita A, Shichida Y, Liao HW, Kazmi MA, Sakmar TP, Yau KW (2006) Parietal-eye phototransduction components and their potential evolutionary implications. Science 311(5767):1617–1621

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Schmid V, Gehring WJ (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18(1):51–55

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci USA 94(18):9893–9898

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Hisatomi O, Yoshida M, Tokunaga F (2001) Pinopsin expressed in the retinal photoreceptors of a diurnal gecko. FEBS Lett 496(2–3):69–74

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Murakami N, Nikaido SS, Pratt BL, Robertson LM (1989) The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. Recent Prog Horm Res 45:279–348

    Article  PubMed  CAS  Google Scholar 

  • Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ (2003) Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 554(3):410–416

    Article  PubMed  CAS  Google Scholar 

  • Terakita A, Yamashita T, Shichida Y (2000) Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci USA 97(26):14263–14267

    Article  PubMed  CAS  Google Scholar 

  • Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y (2004) Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 11(3): 284–289

    Article  PubMed  CAS  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105(3):883–890

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto H, Terakita A, Shichida Y (2005) A rhodopsin exhibiting binding ability to agonist all-trans-retinal. Proc Natl Acad Sci USA 102(18):6303–6308

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto H, Farrens DL, Koyanagi M, Terakita A (2009) The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. J Biol Chem 284(31):20676–20683

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui K, Imai H, Shichida Y (2008) E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment. Biochemistry 47(41):10829–10833

    Article  PubMed  CAS  Google Scholar 

  • Ullrich-Luter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci USA 108(20):8367–8372

    Article  PubMed  Google Scholar 

  • Velarde RA, Sauer CD, Walden KK, Fahrbach SE, Robertson HM (2005) Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35(12): 1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Wald G (1968) Molecular basis of visual excitation. Science 162(850):230–239

    Article  PubMed  CAS  Google Scholar 

  • Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51(7):718–737

    Article  PubMed  Google Scholar 

  • Wang Z, Asenjo AB, Oprian DD (1993) Identification of the Cl(−)-binding site in the human red and green color vision pigments. Biochemistry 32(9):2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC, Merbs SL, Welsbie DS, Yoshioka T, Weissgerber P, Stolz S, Flockerzi V, Freichel M, Simon MI, Clapham DE, Yau KW (2011) Melanopsin signalling in mammalian iris and retina. Nature 479(7371):67–73

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA 107(51):22084–22089

    Article  PubMed  CAS  Google Scholar 

  • Yarfitz S, Hurley JB (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem 269(20):14329–14332

    PubMed  CAS  Google Scholar 

  • Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246(4932):928–930

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. E. Nakajima for critical reading of our manuscript and English correction. This work was supported in part by Grants-in-Aid for Scientific Research and the Global Center of Excellence Program “Formation of a Strategic Base for Biodiversity and Evolutionary Research: from Genome to Ecosystem” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Shichida, Y., Yamashita, T., Imai, H., Kishida, T. (2013). Molecular Aspects of Evolution and Diversity of Animal Photoreception. In: Evolution and Senses. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54222-3_1

Download citation

Publish with us

Policies and ethics