Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 945 Accesses

Abstract

The purpose of this study is to analyze gravitational waves and merger remnants, and clarify their dependence on the NS EOS. In this chapter, we describe methods to extract gravitational waves from numerically computed spacetimes within a finite domain, and to obtain values of physical quantities associated with the remnant disk and BH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general relativity, the Ricci tensor has the same information as that of the energy-momentum tensor.

  2. 2.

    The signature of the Weyl scalar is not universal. Some authors use the opposite signature, and then it is compensated by an additional minus sign for the relation between \(\varPsi _4\) and gravitational waves.

  3. 3.

    The Gram-Schmidt orthogonalization is not performed in SACRA. It is justified because the orthogonality is satisfied at the limit of the infinite radius, where the weak field limit is achieved.

  4. 4.

    We also performed this direct time integration in [16, 17], and present refined results computed by the fixed-frequency integration method, with which the results changes only very slightly for nonspinning BH–NS binaries.

  5. 5.

    To reduce systematic errors associated with this issue, extrapolation of \(\varPsi _4 (r)\) should be performed assuming some functional form, e.g., \(\varPsi _4 (r) = \varPsi _4 ( r \rightarrow \infty ) + \sum _{n>1} \varPsi _{4,n} r^{-n}\).

  6. 6.

    It is noted that the spectrum at high frequency for the Taylor-T4 formula depends on the location where time-domain gravitational waves are truncated. It does not affect the fitting procedure described in Chaps. 6 and 7 as far as we truncate the waveform before \(X\) and the amplitude become too large.

References

  1. M. Shibata, Y. Sekiguchi, Phys. Rev. D 68, 104020 (2003)

    Google Scholar 

  2. L. Baiotti, S. Bernuzzi, G. Corvino, R. de Pietri, A. Nagar, Phys. Rev. D 79, 024002 (2009)

    Google Scholar 

  3. C. Reisswig, C.D. Ott, U. Sperhake, E. Schnetter, Phys. Rev. D 83, 064008 (2011)

    Google Scholar 

  4. T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957)

    Google Scholar 

  5. F.J. Zerilli, Phys. Rev. D 2, 2141 (1970)

    Google Scholar 

  6. V. Moncrief, Ann. Phys. (NY) 88, 323 (1974)

    Google Scholar 

  7. E. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962)

    Google Scholar 

  8. E. Newman, R. Penrose, J. Math. Phys. 4, 998 (1963)

    Google Scholar 

  9. R. Penrose, Phys. Rev. Lett. 10, 66 (1963)

    Google Scholar 

  10. C. Reisswig, N.T. Bishop, D. Pollney, B. Szilágyi, Class. Quant. Grav. 27, 075014 (2010)

    Google Scholar 

  11. H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Proc. Roy. Soc. Lond. 269, 21 (1962)

    Google Scholar 

  12. R.K. Sachs, Proc. Roy. Soc. Lond. 270, 103 (1962)

    Google Scholar 

  13. G.F.R. Ellis, Gen. Rel. Grav. 41, 581 (2009)

    Google Scholar 

  14. C. Reisswig, D. Pollney, Class. Quant. Grav. 28, 95015 (2011)

    Google Scholar 

  15. M. Shibata, K. Kyutoku, T. Yamamoto, K. Taniguchi, Phys. Rev. D 79, 044030 (2009)

    Google Scholar 

  16. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010)

    Google Scholar 

  17. K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 049902(E) (2011)

    Google Scholar 

  18. S.A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972)

    Google Scholar 

  19. S.A. Teukolsky, Astrophys. J. 185, 635 (1973)

    Google Scholar 

  20. P. Jaranowski, A. Królak, Analysis of Gravitational-Wave Data (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  21. M. Boyle, D.A. Brown, L.E. Kidder, A.H. Mroué, H.P. Pfeiffer, M.A. Scheel, G.B. Cook, S.A. Teukolsky, Phys. Rev. D 76, 124038 (2007)

    Google Scholar 

  22. A. Buonanno, B.R. Iyer, E. Ochsner, Y. Pan, B.S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009)

    Google Scholar 

  23. M. Hannam, S. Husa, B. Brügmann, A. Gopakumar, Phys. Rev. D 78,104007 (2008)

    Google Scholar 

  24. M. Hannam, S. Husa, F. Ohme, D. Müller, B. Brügmann, Phys. Rev. D 82, 124008 (2010)

    Google Scholar 

  25. L. Santamaria, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, M. Hannam, S. Husa, P. Mösta, D. Pollney, C. Reisswig, E.L. Robinson, J. Seiler, B. Krishnan, Phys. Rev. D 82, 064016 (2010)

    Google Scholar 

  26. L.E. Kidder, Phys. Rev. D 77, 044016 (2008)

    Google Scholar 

  27. T. Damour, A. Nagar, Fundum. Theor. Phys. 162, 211 (2011)

    Google Scholar 

  28. E. Berti, V. Cardoso, A.O. Starinets, Class. Quant. Grav. 26, 163001 (2009)

    Google Scholar 

  29. B.D. Lackey, K. Kyutoku, M. Shibata, P.R. Brady, J.L. Friedman, Phys. Rev. D 85, 044061 (2012)

    Google Scholar 

  30. T. Yamamoto, M. Shibata, K. Taniguchi, Phys. Rev. D 78, 064054 (2008)

    Google Scholar 

  31. L. Smarr, Phys. Rev. D 7, 289 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koutarou Kyutoku .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Kyutoku, K. (2013). Diagnostics for Numerical Simulations. In: The Black Hole-Neutron Star Binary Merger in Full General Relativity. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54201-8_5

Download citation

Publish with us

Policies and ethics