Advertisement

Methods of Simulations

  • Koutarou Kyutoku
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Numerical simulations of binary mergers are performed using an adaptive-mesh refinement (AMR) code SACRA [1]. In this chapter, we describe the formulation, the gauge conditions, and the numerical scheme adopted in the code. They are essentially the same as those described briefly in [2–4].

Keywords

Conformal Factor Adaptive Mesh Refinement Momentum Constraint Coarse Domain Einstein Constraint Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Yamamoto, M. Shibata, K. Taniguchi, Phys. Rev. D 78, 064054 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 82, 044049 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    K. Kyutoku, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 049902(E) (2011)Google Scholar
  4. 4.
    K. Kyutoku, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 84, 064018 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    R. Arnowitt, S. Deser, C.W. Misner, in Gravitation, ed by L. Witten (Wiley, New York, 1962), pp. 227–265Google Scholar
  6. 6.
    M. Shibata, T. Nakamura, Phys. Rev. D 52, 5428 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    T.W. Baumgarte, S.L. Shapiro, Phys. Rev. D 59, 024007 (1998)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    T. Nakamura, K. Oohara, Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    F. Pretorius, Class. Quantum Gravity 23, S529 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.G. Baker, J. Centrella, D.I. Choi, M. Koppitz, J. van Meter, Phys. Rev. Lett. 96, 111102 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    C. Bona, J. Massó, E. Seidel, J. Stela, Phys. Rev. Lett. 75, 600 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, R. Takahashi, Phys. Rev. D 67, 084023 (2003)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    E. Gourgoulhon, 3+1 formalism in general relativity, Lecture Notes in Physics. vol. 846 (Springer-Verlag Berlin, 2012)Google Scholar
  16. 16.
    P. Marronetti, W. Tichy, B. Brügmann, J.A. González, U. Sperhake, Phys. Rev. D 77, 064010 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M. Alcubierre, Introduction to 3+1 Numerical Relativity (Oxford science publications, Oxford, 2008)Google Scholar
  18. 18.
    S. Bonazzola, E. Gourgoulhon, P. Grandclément, J. Novak, Phys. Rev. D 70, 104007 (2004)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    E. Schnetter, Class. Quantum Gravity 27, 167001 (2010)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    B. Brügmann, J.A. González, M. Hannam, S. Husa, U. Sperhake, W. Tichy, Phys. Rev. D 77, 024027 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S. Brandt, B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Marti, E. Müller, Living Rev. Relativity 6, 7 (2003)ADSGoogle Scholar
  23. 23.
    J.A. Font, Living Rev. Relativity 11, 7 (2008)ADSGoogle Scholar
  24. 24.
    A. Kurganov, E. Tadmor, J. Comp. Phys. 160, 241 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    F. Banyuls, J.A. Font, J.M. Ibáñez, J.M. Marti, J.A. Miralles, Astrophys. J. 476, 221 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Berger, J. Oliger, J. Comp. Phys. 53, 484 (1984)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.KEK, Cosmophysics GroupInstitute of Particle and Nuclear StudiesIbarakiJapan

Personalised recommendations