Advertisement

Facile Preparation of Transparent Monolithic TiO2 Gels Utilizing Chelating Ligand and Mineral Salts

  • George Hasegawa
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Highly homogeneous transparent titania gels have been successfully prepared from titanium alkoxide by a sol–gel method utilizing chelating agent, ethyl acetylacetate (EtAcAc), in the presence of strong acid anions. Only catalytic amount of a strong acid anion suppress the rapid hydrolysis of titanium alkoxide by blocking the nucleophilic attack of HO and H2O, and the resultant moderate sol–gel reactions thus afford homogeneous gelation, leading to transparent monolithic titania gels. Gelation time can be widely controlled by changing amounts of water, chelating agent and salt. The ability of salts to suppress the too abrupt sol–gel reactions is strongly dependent on the electronegativity of anions and valence of cations. With employing NH4NO3 as a suppressing electrolyte, the obtained titania gels can be converted to pure TiO2 by simple washing and heat-treatment, and transformations to anatase and rutile structures were found to start at 400 and 600 °C, respectively.

Keywords

Gelation Time Weight Decrease Titanium Alkoxide Gelation Behavior Homogeneous Gelation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson MA, Gieselmann MJ, Xu Q (1988) Titania and alumina ceramic membranes. J Membr Sci 39:243–258. doi: 10.1016/S0376-7388(00)80932-1 CrossRefGoogle Scholar
  2. 2.
    Kurganov A, Trüdinger U, Isaeva T, Unger K (1996) Native and modified alumina, titania and zirconia in normal and reversed-phase high-performance liquid chromatography. Chromatographia 42:217–222. doi: 10.1007/BF02269656 CrossRefGoogle Scholar
  3. 3.
    Buchmeiser MR (2001) New synthetic ways for the preparation of high-performance liquid chromatography supports. J Chromatogr A 918:233–266. doi: 10.1016/S0021-9673(00)00129-1 CrossRefGoogle Scholar
  4. 4.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2002) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  5. 5.
    Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245. doi: 10.1126/science.1075035 CrossRefGoogle Scholar
  6. 6.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi: 10.1021/cr00033a004 CrossRefGoogle Scholar
  7. 7.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  8. 8.
    O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  9. 9.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. doi: 10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  10. 10.
    Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126:5851–5858. doi: 10.1021/ja0394582 CrossRefGoogle Scholar
  11. 11.
    Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Graetzel M (2004) Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem Mater 16:477–485. doi: 10.1021/cm035046g CrossRefGoogle Scholar
  12. 12.
    Kim HS, Gilmer DC, Campbell SA, Polla DL (1996) Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates. Appl Phys Lett 69:3860–3862. doi: 10.1063/1.117129 CrossRefGoogle Scholar
  13. 13.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432. doi: 10.1038/41233 CrossRefGoogle Scholar
  14. 14.
    Yu JC, Zhang L, Yu J (2002) Direct sonochemical preparation and characterization of active mesoporous TiO with bicrystalline framework. Chem Mater 14:4647–4653. doi: 10.1021/cm0203924 CrossRefGoogle Scholar
  15. 15.
    Hague DC, Mayo MJ (1994) Controlling crystallinity during processing of nanocrystalline titania. J Am Ceram Soc 77:1957–1960. doi: 10.1111/j.1151-2916.1994.tb07078.x CrossRefGoogle Scholar
  16. 16.
    Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity. Chem Lett 24:841–842. doi: 10.1246/cl.1995.841 CrossRefGoogle Scholar
  17. 17.
    Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) Transparent anatase nanocomposite films by the sol–gel process at low temperatures. J Am Ceram Soc 83:229–231. doi: 10.1111/j.1151-2916.2000.tb01178.x CrossRefGoogle Scholar
  18. 18.
    Kajihara K, Nakanishi K, Tanaka K, Hirao K, Soga N (1998) Preparation of macroporous titania films by a sol–gel dip-coating method from the system containing poly(ethylene glycol). J Am Ceram Soc 81:2670–2676CrossRefGoogle Scholar
  19. 19.
    Yoldas BE (1980) Formation of titania-silica glasses by low temperature chemical polymerization. J Non-Cryst Solids 38:81–86. doi: 10.1016/0022-3093(80)90398-1 CrossRefGoogle Scholar
  20. 20.
    Mariscal R, Palacios JM, Galan-Fereres M, Fierro JLG (1994) Incorporation of titania into preshaped silica monolith structures. Appl Catal A: Gen 116:205–219. doi: 10.1016/0926-860X(94)80290-4 CrossRefGoogle Scholar
  21. 21.
    Kim WI, Hong IK (2003) Synthesis of monolithic titania-silica composite aerogels with supercritical drying process. J Ind End Chem 9:728–734Google Scholar
  22. 22.
    Lee JH, Choi SY, Kim CE (1997) The effects of initial sol parameters on the microstructure and optical transparency of TiO2-SiO2 binary aerogels. J Mater Sci 32:3577–3585. doi: 10.1023/A:1018665910396 CrossRefGoogle Scholar
  23. 23.
    Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21:1087–1092. doi: 10.1007/BF01117399 CrossRefGoogle Scholar
  24. 24.
    Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y (1994) Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide. J Mater Sci 29:1617–1622. doi: 10.1007/BF00368935 CrossRefGoogle Scholar
  25. 25.
    Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chem Mater 18:6069–6074. doi: 10.1021/cm0617485 CrossRefGoogle Scholar
  26. 26.
    Yao B, Zhang L (1999) Preparation and characterization of mesoporous titania gel-monolith. J Mater Sci 34:5983–5987. doi: 10.1023/A:1004780728297 CrossRefGoogle Scholar
  27. 27.
    Mir LE, Amlouk A, Elaloui E, Saadoun M, Pierre AC (2008) Preparation and optical characterization of transparent, microporous TiO2 xerogel monoliths. Mater Sci Eng B 146:69–73. doi: 10.1016/j.mseb.2007.07.055 CrossRefGoogle Scholar
  28. 28.
    Moriguchi I, Maeda H, Teraoka Y, Kagawa S (1997) Preparation of a TiO nanoparticulate film using a two-dimensional sol-gel process. Chem Mater 9:1050–1057. doi: 10.1021/cm970023l CrossRefGoogle Scholar
  29. 29.
    Arconada N, Durán A, Suárez S, Portela R, Coronado JM, Sánchez B, Castro Y (2009) Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel. Appl Catal B: Environ 86:1–7. doi: 10.1016/j.apcatb.2008.07.021 CrossRefGoogle Scholar
  30. 30.
    Wellbrock U, Beier W, Frischat GH (1992) Preparation of SiO2-TiO2-ZrO2 gel glasses and coatings by means of modified alkoxide solutions. J Non-Cryst Solids 147:350–355. doi: 10.1016/S0022-3093(05)80643-X CrossRefGoogle Scholar
  31. 31.
    Matijević E, Scheiner P (1978) Ferric hydrous oxide sols III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate solutions. J Colloid Interface Sci 63:509–524. doi: 10.1016/S0021-9797(78)80011-3 CrossRefGoogle Scholar
  32. 32.
    Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S (2008) Modifier ligands effects on the synthesized TiO2 nanocrystals. J Mater Sci 43:1723–1729. doi: 10.1007/s10853-007-2244-z CrossRefGoogle Scholar
  33. 33.
    Doyle G, Tobias RS (1968) Isolation of complex halo anions as the acetylacetonatobis(cyclopentadienyl)titanium(IV) and -vanadium(IV) salts. Reactions of bis(π-cyclopentadienyl)titanium(IV) and bis(π-cyclopentadienyl)vanadium(IV) with squarate and ethyl acetoacetate ions. Inorg Chem 7:2484–2488. doi: 10.1021/ic50070a003 CrossRefGoogle Scholar
  34. 34.
    Kallala M, Sanchez C, Cabane B (1993) Structures of inorganic polymers in sol-gel processes based on titanium oxide. Phys Rev E 48:3692–3704. doi: 10.1103/PhysRevE.48.3692 CrossRefGoogle Scholar
  35. 35.
    Blanchard J, In M, Schaudel B, Sanchez C (1998) Hydrolysis and condensation reactions of transition metal alkoxides calorimetric study and evaluation of the extent of reaction. Eur J Inorg Chem 8:1115–1127CrossRefGoogle Scholar
  36. 36.
    Matijevic E, Budnik M, Meites L (1977) Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution. J Colloid Interface Sci 61:302–311. doi: 10.1016/0021-9797(77)90393-9 CrossRefGoogle Scholar
  37. 37.
    Noda LK, de Almeida RM, Probst LFD, Gonçalves NS (2005) Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J Mol Catal A: Chem 225:39–46. doi: 10.1016/j.molcata.2004.08.025 CrossRefGoogle Scholar
  38. 38.
    Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. hydroxyl-mediated and direct electron-transfer reactions of phenol on a tintanium dioxide-fluoride system. Langmuir 16:2632–2641. doi: 10.1021/la9903301 CrossRefGoogle Scholar
  39. 39.
    Calza P, Pelizzeti E, Mogyorósi K, Kun R, Dékány I (2007) Size dependent photocatalytic activity of hydrothermally crystallized titania nanoparticles on poorly adsorbing phenol in absence and presence of fluoride ion. Appl Catal B: Environ 72:314–321. doi: 10.1016/j.apcatb.2006.10.019 CrossRefGoogle Scholar
  40. 40.
    Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, New YorkGoogle Scholar
  41. 41.
    Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem 5:264–268. doi: 10.1016/0022-1902(58)80003-2 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations