Skip to main content

Monolithic Electrode for Electric Double-Layer Capacitors Based on Macro/Meso/Microporous S-Containing Activated Carbon with High Surface Area

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Macro/meso/microporous carbon monoliths doped with sulfur have been prepared from sulfonated poly(divinylbenzene) (SPDVB) networks followed by the activation with CO2. The surface area of the resultant activated carbon monoliths reached as high as 2,400 m2 g−1. The obtained activated carbon monolith were applied to the monolithic electrode of electric double layer capacitor (EDLC) in aqueous electrolyte. The monolithic electrode of the activated carbon shows high specific capacitance (175 F g−1 at 5 mV s−1 and 206 F g−1 at 0.5 A g−1) and still retains good capacitance even at a high scan rate and current density (103 F g−1 at 200 mV s−1 and 166 F g−1 at 10 A g−1) owing to the hierarchical pore structure which allows an effective transport of ions, and to the high conductivity of the monolithic electrode.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hu YS, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their appilcation in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878. doi:10.1002/adfm.200601152

    Article  CAS  Google Scholar 

  2. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389398. doi:10.1016/j.cattod.2006.09.015

    Article  Google Scholar 

  3. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. doi:10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  4. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. doi:10.1038/nmat2297

    Article  CAS  Google Scholar 

  6. Zhou HS, Zhu SM, Hibino M, Honma I (2003) Electrochemical capacitance of self-ordered mesoporous carbon. J Power Sources 122:219–223. doi:10.1016/S0378-7753(03)00439-7

    Article  CAS  Google Scholar 

  7. Salitra G, Soffer A, Ehad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I. relation between ion and pore dimensions. J Electrochem Soc 147:2486–2493. doi:10.1149/1.1393557

    Article  CAS  Google Scholar 

  8. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–1310. doi:10.1016/j.carbon.2005.01.001

    Article  CAS  Google Scholar 

  9. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224. doi:10.1016/j.carbon.2005.07.029

    Article  CAS  Google Scholar 

  10. Shiraishi S, Kurihara H, Shi L, Nakayama T, Oya A (2002) Electric double-layer capacitance of meso/macroporous activated carbon fibers prepared by the blending method I. Nickel-loaded activated carbon fibers in propylene carbonate solution containing LiClO4 salt. J Electrochem Soc 149:A855–A861. doi:10.1149/1.1481525

    Article  CAS  Google Scholar 

  11. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731. doi:10.1021/ja7106178

    Article  CAS  Google Scholar 

  12. Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Pécastaings G, Derré A, Soum A, Deleuze H, Birot M, Backov R (2009) Hard macrocellular silica Si(HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv Funct Mater 19:3136–3145. doi:10.1002/adfm.200900749

    Article  CAS  Google Scholar 

  13. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodrígez-Reinoso F (2009) An activated carbon monolith as an electrode material for supercapacitors. Carbon 47:195–200. doi:10.1016/j.carbon.2008.09.048

    Article  CAS  Google Scholar 

  14. Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun 21:2177–2178. doi:10.1039/a906872d

    Article  Google Scholar 

  15. Álvarez S, Blanco-López MC, Miranda-Ordieres AJ, Fuertes AB, Centeno TA (2005) Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon 43:855–870. doi:10.1016/j.carbon.2004.10.044

    Article  Google Scholar 

  16. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43:1293–1302. doi:10.1016/j.carbon.2004.12.028

    Article  CAS  Google Scholar 

  17. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224. doi:10.1016/j.carbon.2005.07.029

    Article  CAS  Google Scholar 

  18. Xia K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46:1718–1726. doi:10.1016/j.carbon.2008.07.018

    Article  CAS  Google Scholar 

  19. Liu B, Shioyama H, Jiang H, Zhang X, Xu Q (2010) Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463. doi:10.1016/j.carbon.2009.09.061

    Article  CAS  Google Scholar 

  20. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376. doi:10.1002/anie.200702721

    Article  CAS  Google Scholar 

  21. Woo SW, Dokko K, Nakano H, Kanamura K (2008) Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 18:1674–1680. doi:10.1039/b717996k

    Article  CAS  Google Scholar 

  22. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Pore formation in poly(divinylbenzene) networks derived from organotellurium-mediated living radical polymerization. Macromolecules 42:1270–1277. doi:10.1021/ma802343a

    Article  CAS  Google Scholar 

  23. Hasegawa J, Kanamori K, Nakanishi K, Hanada T (2010) Macro- and microporous carbon monoliths with high surface areas pyrolyzed from poly(divinylbenzene) networks. C R Chim 13:207–211. doi:10.1016/j.crci.2009.04.003

    Article  CAS  Google Scholar 

  24. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon 48:1757–1766. doi:10.1016/j.carbon.2010.01.019

    Article  CAS  Google Scholar 

  25. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercaoacitors prepared from melamine-based carbon. Chem Mater 17:1241–1247. doi:10.1021/cm049337g

    Article  CAS  Google Scholar 

  26. Jurewicz K, Babel K, Źiółkowski A, Wachowska H (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48:1491–1498. doi:10.1016/S0013-4686(03)00035-5

    Article  CAS  Google Scholar 

  27. Kim ND, Kim W, Joo JB, Oh S, Kim P, Kim Y, Yi J (2008) Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J Power Sources 180:671–675. doi:10.1016/j.jpowsour.2008.01.055

    Article  CAS  Google Scholar 

  28. Neely JW (1981) Characterization of polymer carbons derived from porous sulfonated polystyrene. Carbon 19:27–36. doi:10.1016/0008-6223(81)90101-9

    Article  CAS  Google Scholar 

  29. Edwards HGM, Brown DR, Dale JR, Plant S (2001) Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins. J Mol Struct 595:111–125. doi:10.1016/S0022-2860(01)00515-4

    Article  CAS  Google Scholar 

  30. Hines D, Bagreev A, Bandosz TJ (2004) Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts. Langmuir 20:3388–3397. doi:10.1021/la0360613

    Article  CAS  Google Scholar 

  31. Toyoda M, Tani U, Soneda Y (2004) Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte. Carbon 42:2833–2837. doi:10.1016/j.carbon.2004.06.022

    Article  CAS  Google Scholar 

  32. Kim YT, Mitani T (2006) Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: balancing hydrophilicity and conductivity. J Power Sources 158:1517–1522. doi:10.1016/j.jpowsour.2005.10.069

    Article  CAS  Google Scholar 

  33. Hulicova-Jurcakokova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809. doi:10.1002/adfm.200801100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Monolithic Electrode for Electric Double-Layer Capacitors Based on Macro/Meso/Microporous S-Containing Activated Carbon with High Surface Area. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_6

Download citation

Publish with us

Policies and ethics