Skip to main content

Extension of Living Radical Polymerization Accompanied by Phase Separation to Methacrylate- and Acrylamide-based Polymer Monoliths

  • Chapter
  • First Online:
  • 1371 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Rigid methacrylate-based and acrylamide-based polymer monoliths with well-defined macropores have been synthesized from different monomers by organotellurium-mediated living radical polymerization (TERP) accompanied by phase separation. Glycerol 1,3-dimethacrylate (GDMA), trimethylolpropane trimethacrylate (Trim), and N,N-methylenebis(acrylamide) (BIS) were used as monomers. In each system, poly(ethylene oxide) (PEO) effectively induced spinodal decomposition with the progress of polymerization. The resultant polymer monoliths possessed macropores with narrow size distributions and the macropore size can be controlled simply by varying the amount of PEO. Starting from GDMA and BIS, polymer monoliths with unimodal macropores can be obtained due to the collapse of micro- and mesopores, which were originally embedded in macropore skeletons, by large shrinkage during drying. In contrast, starting from Trim, the obtained polymer monoliths included not only macropores but also micro- and mesopores, which led to high specific surface area (470 mg−1), owing to the higher crosslinking density.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peters EC, Svec F, Fréchet JMJ (1999) Rigid macroporous polymer monoliths. Adv Mater 11:1169–1181. doi:10.1002/(SICI)1521-4095(199910)11:14<1169:AID-ADMA1169>3.0.CO;2-6

    Article  CAS  Google Scholar 

  2. Svec F, Fréchet JMJ (1996) Science 273:205–211. doi:10.1126/science.273.5272.205

    Article  CAS  Google Scholar 

  3. Courtois J, Fischer G, Sellergren B, Irgum K (2006) Molecularly imprinted polymers grafted to flow through poly(trimethylolpropane trimethacrylate) monoliths for capillary-based solid phase extraction. J Chromatogr A 1109:92–99. doi:10.1016/j.chroma.2005.12.014

    Article  CAS  Google Scholar 

  4. Zou H, Huang X, Ye M, Luo Q (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A 954:5–32. doi:10.1016/S0021-9673(02)00072-9

    Article  CAS  Google Scholar 

  5. Aoki H, Tanaka N, Kubo T, Hosoya K (2008) Poly(glycerin 1,3-dimethacrylate)-based monolith with a bicontinuous structure tailored as HPLC column by photoinitiated in situ radical polymerization via viscoelastic phase separation. J Polym Sci A Polym Chem 46:4651–4673. doi:10.1002/pola.22786

    Article  CAS  Google Scholar 

  6. Xie S, Svec F, Fréchet JMJ (1997) Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J Chromatogr A 775:65–72. doi:10.1016/S0021-9673(97)00254-9

    Article  CAS  Google Scholar 

  7. Zeng CM, Liao JL, Nakazato K, Hjertén S (1996) Hydrophobic-interaction chromatography of proteins on continuous beds derivatized with isopropyl groups. J Chromatogr A 753:227–234. doi:10.1016/S0021-9673(96)00550-X

    Article  CAS  Google Scholar 

  8. Hogger D, Freitag R (2001) Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography. J Chromatogr A 914:211–222. doi:10.1016/S0021-9673(00)01119-5

    Article  Google Scholar 

  9. Pliva FM, Andersson J, Galaev IY, Mattiasson B (2004) Characterization of polyacrylamide based monolithic columns. J Sep Sci 27:828–836. doi:10.1002/jssc.200401836

    Article  Google Scholar 

  10. Zhu G, Yuan H, Zhao P, Zhang L, Liang Z, Zhang W, Zhang Y (2006) Macroporous polyacrylamide-based monolithic columns with immobilized pH gradient for protein analysis. Electrophoresis 27:3578–3583. doi:10.1002/elps.200600189

    Article  CAS  Google Scholar 

  11. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater 19:3393–3398. doi:10.1021/cm063051p

    Article  CAS  Google Scholar 

  12. Goto A, Kwak Y, Fukuda T, Yamago S, Iida K, Nakajima M, Yoshida J (2003) Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc 125:8720–8721. doi:10.1021/ja035464m

    Article  CAS  Google Scholar 

  13. Kanamori K, Hasegawa J, Nakanishi K, Hanada T (2008) Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization. Macromolecules 41:7186–7193. doi:10.1021/ma800563p

    Article  CAS  Google Scholar 

  14. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:2407–2411. doi:10.1002/adma.200601026

    Article  CAS  Google Scholar 

  15. Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Pore formation in poly(divinylbenzene) networks derived from organotellurium-mediated living radical polymerization. Macromolecules 42:1270–1277. doi:10.1021/ma802343a

    Article  CAS  Google Scholar 

  16. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. doi:10.1016/j.biomaterials.2006.01.039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Extension of Living Radical Polymerization Accompanied by Phase Separation to Methacrylate- and Acrylamide-based Polymer Monoliths. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_3

Download citation

Publish with us

Policies and ethics