Facile Preparation of Monolithic LiFePO4/Carbon Composites with Well-Defined Macropores for Li-ion Battery

Part of the Springer Theses book series (Springer Theses)


The novel and facile method for the preparation of monolithic LiFePO4/carbon composites with well-defined macropores have been developed. The precursor macroporous gels consisting of inorganic networks as well as organic polymers were fabricated by the epoxide-mediated sol–gel method accompanied by phase separation. The inorganic–organic hybrid gels were calcined under inert atmosphere resulting in LiFePO4/carbon monoliths. The influence of the starting compositions on the gel morphologies has been investigated and the constituents of the gel network were discussed. The reaction mechanism of the crystallization of LiFePO4 from the green bodies during the calcination has also been investigated by thermal analysis, X-ray diffraction, and Raman scattering. In addition, electrochemical properties of the resultant LiFePO4/carbon composites were examined by the charge–discharge test.


Calcination Temperature Discharge Capacity Propylene Oxide Gelation Time Macroporous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79–104. doi: 10.1016/0378-7753(94)01956-8 CrossRefGoogle Scholar
  2. 2.
    Scrosati B (1995) Battery technology: challenge of portable power. Nature 373:557–558. doi: 10.1038/373557a0 CrossRefGoogle Scholar
  3. 3.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644 CrossRefGoogle Scholar
  4. 4.
    Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980. doi: 10.1126/science.1122152 CrossRefGoogle Scholar
  5. 5.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301. doi: 10.1021/cr020731c CrossRefGoogle Scholar
  6. 6.
    Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715. doi: 10.1002/adma.201003587 CrossRefGoogle Scholar
  7. 7.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi: 10.1149/1.1837571 CrossRefGoogle Scholar
  8. 8.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229. doi: 10.1149/1.1348257 CrossRefGoogle Scholar
  9. 9.
    Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172. doi: 10.1149/1.1396695 CrossRefGoogle Scholar
  10. 10.
    Hu Y, Doeff MM, Kostecki R, Fiñones R (2004) Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J Electrochem Soc 151:A1279–A1285. doi: 10.1149/1.1768546 CrossRefGoogle Scholar
  11. 11.
    Delacourt C, Poizot P, Levasseur S, Maquelier C (2006) Size effects on carbon-free LiFePO4 powders. Electrochem Solid-State Lett 9:A352–A355. doi: 10.1149/1.2201987 CrossRefGoogle Scholar
  12. 12.
    Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6:A207–A209. doi: 10.1149/1.1601372 CrossRefGoogle Scholar
  13. 13.
    Hsu KF, Tsay SY, Hwang BJ (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J Mater Chem 14:2690–2695. doi: 10.1039/b406774f CrossRefGoogle Scholar
  14. 14.
    Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610. doi: 10.1149/1.1860492 CrossRefGoogle Scholar
  15. 15.
    Zhang WJ (2010) Comparison of the rate capacities of LiFePO4 cathode materials. J Electrochem Soc 157:A1040–A1046. doi: 10.1149/1.3460840 CrossRefGoogle Scholar
  16. 16.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater 1:123–128. doi: 10.1038/nmat732 CrossRefGoogle Scholar
  17. 17.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193. doi: 10.1038/nature07853 CrossRefGoogle Scholar
  18. 18.
    Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492. doi: 10.1021/cr020740l CrossRefGoogle Scholar
  19. 19.
    Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Electrode materials for lithium secondary batteries prepared by sol-gel methods. Prog Mater Sci 50:881–928. doi: 10.1016/j.pmatsci.2005.04.002 CrossRefGoogle Scholar
  20. 20.
    Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) Porous olivine composites synthesized by sol-gel technique. J Power Sour 153:274–280. doi: 10.1016/j.jpowsour.2005.05.033 CrossRefGoogle Scholar
  21. 21.
    Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269. doi: 10.1002/adma.200702242 CrossRefGoogle Scholar
  22. 22.
    Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater 21:2895–2903. doi: 10.1021/cm900698p CrossRefGoogle Scholar
  23. 23.
    Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem Mater 21:5300–5306. doi: 10.1021/cm9024167 CrossRefGoogle Scholar
  24. 24.
    Qian J, Zhou M, Cao Y, Ai X, Yang H (2010) Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J Phys Chem C 114:3477–3482. doi: 10.1021/jp912102k CrossRefGoogle Scholar
  25. 25.
    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater 19:3393–3398. doi: 10.1021/cm063051p CrossRefGoogle Scholar
  26. 26.
    Tokudome Y, Nakanishi K, Kosaka S, Kariya A, Kaji H, Hanada T (2010) Synthesis of high-silica and low-silica zeolite monoliths with trimodal pores. Micropor Mesopor Mater 132:538–542. doi: 10.1016/j.micromeso.2010.04.005 CrossRefGoogle Scholar
  27. 27.
    Tokudome Y, Miyasaka A, Nakanishi K, Hanada T (2011) Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol-gel reaction from ionic precursors. J Sol–Gel Sci Technol 57:269–278. doi: 10.1007/s10971-010-2184-y CrossRefGoogle Scholar
  28. 28.
    Itoh H, Tabata T, Kokitsu M, Okazaki N, Imizu Y, Tada A (1993) Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum-chloride –a new sol-gel method using propylene-oxide as a gelation promoter. J Ceram Soc Jpn 101:1081–1083CrossRefGoogle Scholar
  29. 29.
    Gash AE, Tillotson TM, Satcher JH Jr, Hrubesh LW, Simpson RL (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285:22–28. doi: 10.1016/S0022-3093(01)00427-6 CrossRefGoogle Scholar
  30. 30.
    Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007. doi: 10.1021/cm0007611 CrossRefGoogle Scholar
  31. 31.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112. doi: 10.1023/A:1009627216939 CrossRefGoogle Scholar
  32. 32.
    Maiyalagan T, Viswanathan B (2005) Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Mater Chem Phys 93:291–295. doi: 10.1016/j.matchemphys.2005.03.039 CrossRefGoogle Scholar
  33. 33.
    Barker J, Saidi MY, Swoyer JL (2003) Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem Solid-State Lett 6:A53–A55. doi: 10.1149/1.1544211 CrossRefGoogle Scholar
  34. 34.
    Kim CW, Lee MH, Jeong WT, Lee KS (2005) Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material. J Power Sources 146:534–538. doi: 10.1016/j.jpowsour.2005.03.058 CrossRefGoogle Scholar
  35. 35.
    Iuliano M, Ciavatta L, Tommaso GD (2007) On the solubility constant of strengite. Soil Sci Soc Am J 71:1137–1140. doi: 10.2136/sssaj2006.0109 CrossRefGoogle Scholar
  36. 36.
    Pigeon M, Prud’homme RE, Pézolet M (1991) Characterization of molecular-orientation in polyethylene by Raman spectroscopy Macromolecules 24:5687–5694. doi:  10.1021/ma00020a032
  37. 37.
    Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:063511. doi: 10.1063/1.2337556 CrossRefGoogle Scholar
  38. 38.
    Erdemi H, Bozkurt A (2004) Synthesis and characterization of poly(vinylpyrrolidone-co-vinylphosphonic acid) copolymers. Eur Polym J 40:1925–1929. doi: 10.1016/j.eurpolymj.2004.04.001 CrossRefGoogle Scholar
  39. 39.
    Daheron B, MacNeli DD (2011) Study of LiFePO4 synthesized using a molten method with varying stoichiometries. J Solid State Electrochem 15:1217–1225. doi: 10.1007/s10008-010-1191-9 CrossRefGoogle Scholar
  40. 40.
    Tennison SR (1998) Phenolic-resin-derived activated carbons. Appl Catal A General 173:289–311. doi: 10.1016/S0926-860X(98)00186-0 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations