Skip to main content

Hierarchically Porous Carbon Monoliths with High Surface Area from Arylene-Bridged Polysilsesquioxanes Without Thermal Activation Process

  • Chapter
  • First Online:
  • 1388 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Hierarchically porous carbon monoliths with high specific surface area have been prepared via a nano-phase extraction technique from carbon/silica composites which had been prepared from arylene-bridged polysilsesquioxanes. The nano-sized silica phase developed in the composite has been removed to increase micropores, resulting in a similar effect to thermal activation of carbons. The conventional thermal activation processes using CO2 and water vapor have suffered from structural heterogeneity between the inner and outer parts of the monoliths due to the difference in the degree of exposure to the activating gas. However, the carbon monoliths obtained by a nano-phase extraction technique are expected to possess homogeneously distributed micropores. The changes of the pore characteristics through the synthesis process by the nitrogen adsorption–desorption method and mercury porosimetry. In particular, the growth of silica phase in carbon/silica composites at different temperatures has been characterized by the micropore analysis using the Horváth–Kawazoe method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jiang P, Hwang KS, Mitteleman DM, Bertone JF, Colvin VL (1999) Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. J Am Chem Soc 121:11630–11637. doi:10.1021/ja9903476

    Article  CAS  Google Scholar 

  2. Huczko A (2000) Template-based synthesis of nanomaterials. Appl Phys A 70:365–376. doi:10.1007/s003390000440

    Article  CAS  Google Scholar 

  3. Rhodes KH, Davis SA, Caruso F, Zhang B, Mann S (2000) Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chem Mater 12:2832–2834. doi:10.1021/cm000438y

    Article  CAS  Google Scholar 

  4. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. doi:10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  5. Stein A (2001) Sphere templating methods for periodic porous solids. Micropor Mesopor Mater 44:227–239. doi:10.1016/S1387-1811(01)00189-5

    Article  Google Scholar 

  6. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194. doi:10.1016/S0142-9612(02)00276-4

    Article  CAS  Google Scholar 

  7. Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805. doi:10.1002/adma.200600148

    Article  CAS  Google Scholar 

  8. Nakajima H (2007) Fabrication, properties and application of porous metals with directional pores. Prog Mater Sci 52:1091–1173. doi:10.1016/j.pmatsci.2006.09.001

    Article  CAS  Google Scholar 

  9. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746. doi:10.1021/jp991673a

    Article  CAS  Google Scholar 

  10. Yang H, Zhao D (2005) Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 15:1217–1231. doi:10.1039/b414402c

    CAS  Google Scholar 

  11. Kyotani T, Nagai T, Inoue S, Tomita A (1997) Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem Mater 9:609–615. doi:10.1021/cm960430h

    Article  CAS  Google Scholar 

  12. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094. doi:10.1002/adma.200501576

    Article  CAS  Google Scholar 

  13. Taguchi A, Smått JH, Lindén M (2003) Carbon monoliths prossessing a hierarchical, fully interconnected porosity. Adv Mater 15:1209–1211. doi:10.1002/adma.200304848

    Article  CAS  Google Scholar 

  14. Pang J, John VT, Loy DA, Yang Z, Lu Y (2005) Hierarchical mesoporous carbon/silica nanocomposites from phenyl-bridged organosilane. Adv Mater 17:704–707. doi:10.1002/adma.200400873

    Article  CAS  Google Scholar 

  15. Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D (2006) Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc 128:11652–11662. doi:10.1021/ja0633518

    Article  CAS  Google Scholar 

  16. Inomata K, Kanazawa K, Urabe Y, Hosono H, Araki T (2002) Natural gas storage in activated carbon pellets without a binder. Carbon 40:87–93. doi:10.1016/S0008-6223(01)00084-7

    Article  CAS  Google Scholar 

  17. Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF (2002) Activated carbon monoliths for methane storage: influence of binder. Carbon 40:2817–2825. doi:10.1016/S0008-6223(02)00194-X

    Article  Google Scholar 

  18. Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K (2003) Single-wall nanostructured carbon for methane storage. J Phys Chem B 107:4681–4684. doi:10.1021/jp0278263

    Article  CAS  Google Scholar 

  19. Hou PX, Orikasa H, Itoi H, Nishihara H, Kyotani T (2007) Densification of ordered microporous carbons and controlling their micropore size by hot-pressing. Carbon 45:2011–2016. doi:10.1016/j.carbon.2007.05.029

    Article  CAS  Google Scholar 

  20. Ramos-Fernández JM, Martínez-Escandell M, Rodríguez-Reinoso F (2008) Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon 46:365–389. doi:10.1016/j.carbon.2007.11.042

    Article  Google Scholar 

  21. Lopez M, Labady M, Laine J (1996) Preparation of activated carbon from wood monolith. Carbon 34:825–827. doi:10.1016/0008-6223(96)89475-9

    Article  CAS  Google Scholar 

  22. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80. doi:10.1016/S0022-3093(98)00011-8

    Article  CAS  Google Scholar 

  23. Siyasukh A, Maneeprom P, Larpkiattaworn S, Tonanon N, Tanthapanichakoon W, Tamon H, Charinpanitkul T (2008) Preparation of carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon 46:1309–1315. doi:10.1016/j.carbon.2008.05.006

    Article  CAS  Google Scholar 

  24. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon 48:1757–1766. doi:10.1016/j.carbon.2010.01.019

    Article  CAS  Google Scholar 

  25. Hasegawa G, Aoki M, Kanamori K, Nakanishi K, Hanada T, Tadanaga K (2011) 25. Monolithic electrode for electric double-layer capacitors based on macro-meso-microporous S-containing activated carbon with high surface area. J Mater Chem 21:2060–2063. doi:10.1039/c0jm03793a

    Article  CAS  Google Scholar 

  26. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2009) Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J Mater Chem 19:7716–7720. doi:10.1039/b913992c

    Article  CAS  Google Scholar 

  27. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) A new route to monolithic macroporous SiC-C composites from biphenylene-bridged polysilsesquioxane gels. Chem Mater 22:2541–2547. doi:10.1021/cm9034616

    Article  CAS  Google Scholar 

  28. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112. doi:10.1023/A:1009627216939

    Article  CAS  Google Scholar 

  29. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chem Commun 46:8037–8039. doi:10.1039/c0cc02974b

    Article  CAS  Google Scholar 

  30. Horváth G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular-sieve carbon. J Chem Eng Jpn 16:470–475. doi:10.1252/jcej.16.470

    Article  Google Scholar 

  31. Jüntgen H (1977) New application for carbonaceous adsorbents. Carbon 15:273–283. doi:10.1016/0008-6223(77)90030-6

    Article  Google Scholar 

  32. Rodríguez-Reinoso F, Molina-Sabio M, González MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33:15–23. doi:10.1016/0008-6223(94)00100-E

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Hierarchically Porous Carbon Monoliths with High Surface Area from Arylene-Bridged Polysilsesquioxanes Without Thermal Activation Process. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_12

Download citation

Publish with us

Policies and ethics