Skip to main content

Polymerization Using Phosphazene Bases

  • Chapter
Anionic Polymerization

Abstract

In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metal-based initiating systems. In this chapter, the general features of phosphazene-promoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  2. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107

    Article  CAS  Google Scholar 

  3. Dove AP (2012) Organic catalysis for ring-opening polymerization. ACS Macro Lett 1:1409–1412

    Article  CAS  Google Scholar 

  4. Boileau S, Illy N (2011) Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci 36:1132–1151

    Article  CAS  Google Scholar 

  5. Schwesinger R, Schlemper H (1987) Peralkylated polyaminophosphazenes – extremely strong, neutral nitrogen bases. Angew Chem Int Ed 26:1167–1169

    Article  Google Scholar 

  6. Schwesinger R, Link R, Wenzl P, Kossek S, Keller M (2006) Extremely base-resistant organic phosphazenium cations. Chem Eur J 12:429–437

    Article  Google Scholar 

  7. Eßwein B, Molenberg A, Möller M (1996) Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol Symp 107:331–340

    Article  Google Scholar 

  8. Eßwein B, Steidl NM, Möller M (1996) Anionic polymerization of oxirane in the presence of the polyiminophosphazene base t-Bu-P4. Macromol Rapid Commun 17:143–148

    Article  Google Scholar 

  9. Misaka H, Sakai R, Satoh T, Kakuchi T (2011) Synthesis of high molecular weight and end-functionalized poly(styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules 44:9099–9107

    Article  CAS  Google Scholar 

  10. Kwon W, Rho Y, Kamoshida K, Kwon KH, Jeong YC, Kim J, Misaka H, Shin TJ, Kim J, Kim K-W, Jin KS, Chang T, Kim H, Satoh T, Kakuchi T, Ree M (2012) Well-defined functional linear aliphatic diblock copolyethers: a versatile linear aliphatic polyether platform for selective functionalizations and various nanostructures. Adv Funct Mater 22:5194–5208

    Article  CAS  Google Scholar 

  11. Misaka H, Tamura E, Makiguchi K, Kamoshida K, Sakai R, Satoh T, Kakuchi T (2012) Synthesis of end-functionalized polyethers by phosphazene base-catalyzed ring-opening polymerization of 1,2-butylene oxide and glycidyl ether. J Polym Sci Part A Polym Chem 50:1941–1952

    Article  CAS  Google Scholar 

  12. Eßwein B, Möller M (1996) Polymerisation von ethylenoxid mit alkyllithiumverbindungen und der phosphazenbase “tBu-P4”. Angew Chem 108:703–705

    Article  Google Scholar 

  13. Zhao J, Pahovnik D, Gnanou Y, Hadjichristidis N (2014) Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid. Macromolecules 47:1693–1698

    Article  CAS  Google Scholar 

  14. Molenberg A, Möller M (1995) A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol Rapid Commun 16:449–453

    Article  CAS  Google Scholar 

  15. Van Dyke ME, Clarson SJ (1998) Reaction kinetics for the anionic ring-opening polymerization of tetraphenyltetramethylcyclotetrasiloxane using a fast initiator system. J Inorg Organomet Polym 8:111–117

    Article  Google Scholar 

  16. Hupfield PC, Taylor RG (1999) Ring-opening polymerization of siloxanes using phosphazene base catalysts. J Inorg Organomet Polym 9:17–34

    Article  CAS  Google Scholar 

  17. Grzelka A, Chojnowski J, Fortuniak W, Taylor RG, Hupfield PC (2004) Kinetics of the anionic ring opening polymerization of cyclosiloxanes initiated with a superbase. J Inorg Organomet Polym 14:85–99

    Article  CAS  Google Scholar 

  18. Pibre G, Chaumont P, Fleury E, Cassagnau P (2008) Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: kinetics and rheology. Polymer 49:234–240

    Article  CAS  Google Scholar 

  19. Memeger W, Campbell GC, Davidson F (1996) Poly(aminophosphazene)s and protophosphatranes mimic classical strong anionic base catalysts in the anionic ring-opening polymerization of lactams. Macromolecules 29:6475–6480

    Article  CAS  Google Scholar 

  20. Yang H, Zhao J, Yan M, Pispas S, Zhang G (2011) Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polym Chem 2:2888–2892

    Article  CAS  Google Scholar 

  21. Illy N, Boileau S, Penelle J, Barbier V (2009) Metal-free activation in the anionic ring-opening polymerization of cyclopropane derivatives. Macromol Rapid Commun 30:1731–1735

    Article  CAS  Google Scholar 

  22. Illy N, Boileau S, Buchmann W, Penelle J, Barbier V (2010) Control of end groups in anionic polymerizations using phosphazene bases and protic precursors as initiating system (XH-ButP4 approach): application to the ring-opening polymerization of cyclopropane-1,1-dicarboxylates. Macromolecules 43:8782–8789

    Article  CAS  Google Scholar 

  23. Illy N, Boileau S, Winnik MA, Penelle J, Barbier V (2012) Thiol-ene “clickable” carbon-chain polymers based on diallyl cyclopropane-1,1-dicarboxylate. Polymer 53:903–912

    Article  CAS  Google Scholar 

  24. Zhang L, Nederberg F, Messman JM, Pratt RC, Hedrick JL, Wade CG (2007) Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J Am Chem Soc 129:12610–12611

    Article  CAS  Google Scholar 

  25. Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG (2007) Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40:4154–4158

    Article  CAS  Google Scholar 

  26. De Winter J, Coulembier O, Gerbaux P, Dubois P (2010) High molecular weight poly(α, α', β-trisubstituted β-lactones) as generated by metal-free phosphazene catalysts. Macromolecules 43:10291–10296

    Article  Google Scholar 

  27. Jaffredo CG, Carpentier J-F, Guillaume SM (2012) Controlled rop of β-butyrolactone simply mediated by amidine, guanidine, and phosphazene organocatalysts. Macromol Rapid Commun 33:1938–1944

    Article  CAS  Google Scholar 

  28. Yang H, Xu J, Pispas S, Zhang G (2012) Hybrid copolymerization of ε-caprolactone and methyl methacrylate. Macromolecules 45:3312–3317

    Article  CAS  Google Scholar 

  29. Helou M, Miserque O, Brusson J-M, Carpentier J-F, Guillaume SM (2010) Organocatalysts for the controlled “immortal” ring-opening polymerization of six-membered-ring cyclic carbonates: a metal-free, green process. Chem Eur J 16:13805–13813

    Article  CAS  Google Scholar 

  30. Brignou P, Priebe Gil M, Casagrande O, J-Fo C, Guillaume SM (2010) Polycarbonates derived from green acids: ring-opening polymerization of seven-membered cyclic carbonates. Macromolecules 43:8007–8017

    Article  CAS  Google Scholar 

  31. Yang H, Yan M, Pispas S, Zhang G (2011) Synthesis of poly (ethylene carbonate)-co-(ethylene oxide) copolymer by phosphazene-catalyzed ROP. Macromol Chem Phys 212:2589–2593

    Article  CAS  Google Scholar 

  32. Pietzonka T, Seebach D (1993) The P4-phosphazene base as part of a new metal-free initiator system for the anionic polymerization of methyl methacrylate. Angew Chem Int Ed 32:716–717

    Article  Google Scholar 

  33. Börner HG, Heitz W (1998) Anionic polymerization of butyl acrylate with metal free initiator systems containing [1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphor-anylidenamino]-2λ5, 4λ5-catenadi(phosphazene)] base (P4-tert-butyl-phosphazene base). Macromol Chem Phys 199:1815–1820

    Google Scholar 

  34. Baskaran D, Müller AHE (2000) Anionic polymerization of methyl methacrylate using tetrakis tris(dimethyl amino)phosphoranylidenamino phosphonium (P5 +) as counterion in tetrahydrofuran. Macromol Rapid Commun 21:390–395

    Article  CAS  Google Scholar 

  35. Chen Y, Fuchise K, Narumi A, Kawaguchi S, Satoh T, Kakuchi T (2011) Core-first synthesis of three-, four-, and six-armed star-shaped poly(methyl methacrylate)s by group transfer polymerization using phosphazene base. Macromolecules 44:9091–9098

    Article  CAS  Google Scholar 

  36. Kakuchi T, Chen Y, Kitakado J, Mori K, Fuchise K, Satoh T (2011) Organic superbase as an efficient catalyst for group transfer polymerization of methyl methacrylate. Macromolecules 44:4641–4647

    Article  CAS  Google Scholar 

  37. Förster S, Krämer E (1999) Synthesis of PB − PEO and PI − PEO block copolymers with alkyllithium initiators and the phosphazene base t-BuP4. Macromolecules 32:2783–2785

    Article  Google Scholar 

  38. Schlaad H, Kukula H, Rudloff J, Below I (2001) Synthesis of α, ω-heterobifunctional poly (ethylene glycol)s by metal-free anionic ring-opening polymerization. Macromolecules 34:4302–4304

    Article  CAS  Google Scholar 

  39. Zhao J, Schlaad H, Weidner S, Antonietti M (2012) Synthesis of terpene-poly(ethylene oxide)s by t-BuP4-promoted anionic ring-opening polymerization. Polym Chem 3:1763–1768

    Article  CAS  Google Scholar 

  40. Zhao J, Mountrichas G, Zhang G, Pispas S (2009) Amphiphilic polystyrene-b-poly(p-hydroxystyrene-g-ethylene oxide) block-graft copolymers via a combination of conventional and metal-free anionic polymerization. Macromolecules 42:8661–8668

    Article  CAS  Google Scholar 

  41. Zhao J, Mountrichas G, Zhang G, Pispas S (2010) Thermoresponsive core-shell brush copolymers with poly(propylene oxide)-block-poly(ethylene oxide) side chains via a “grafting from” technique. Macromolecules 43:1771–1777

    Article  CAS  Google Scholar 

  42. Zhao J, Zhang G, Pispas S (2010) Thermoresponsive brush copolymers with poly(propylene oxide-ran-ethylene oxide) side chains via metal-free anionic polymerization “grafting from” technique. J Polym Sci Part A Polym Chem 48:2320–2328

    Article  CAS  Google Scholar 

  43. Zhao J, Schlaad H (2011) Controlled anionic graft polymerization of ethylene oxide directly from poly(N-isopropylacrylamide). Macromolecules 44:5861–5864

    Article  CAS  Google Scholar 

  44. Tanaka Y, Arakawa M, Yamaguchi Y, Hori C, Ueno M, Tanaka T et al (2006) NMR spectroscopic observation of a metal-free acetylide anion. Chem Asian J 1:581–585

    Article  CAS  Google Scholar 

  45. Kaljurand I, Kutt A, Soovali L, Rodima T, Maemets V, Leito I, Koppel IA (2005) Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales. J Org Chem 70:1019–1028

    Article  CAS  Google Scholar 

  46. Rexin O, Mülhaupt R (2002) Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. J Polym Sci Part A Polym Chem 40:864–873

    Article  CAS  Google Scholar 

  47. Thomas A, Schlaad H, Smarsly B, Antonietti M (2003) Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: learning about finer details of polymer self-assembly. Langmuir 19:4455–4459

    Article  CAS  Google Scholar 

  48. Groenewolt M, Brezesinski T, Schlaad H, Antonietti M, Groh PW, Iván B (2005) Polyisobutylene-block-poly(ethylene oxide) for robust templating of highly ordered mesoporous materials. Adv Mater 17:1158–1162

    Article  CAS  Google Scholar 

  49. Leito I, Rodima T, Koppel IA, Schwesinger R, Vlasov VM (1997) Acid-base equilibria in nonpolar media. 1. a spectrophotometric method for acidity measurements in heptane. J Org Chem 62:8479–8483

    Article  CAS  Google Scholar 

  50. Hinman JG, Lough AJ, Morris RH (2007) Properties of the polyhydride anions [WH5(PMe2Ph)3] and [ReH4(PMePh2)3 and periodic trends in the acidity of polyhydride complexes. Inorg Chem 46:4392–4401

    Article  CAS  Google Scholar 

  51. Zhao J, Pahovnik D, Gnanou Y, Hadjichristidis N (2014) Sequential polymerization of ethylene oxide, ε-caprolactone and L-lactide: a one-pot metal-free route to tri- and pentablock terpolymers. Polym Chem 5:3750–3753

    Article  CAS  Google Scholar 

  52. Cai G, Weber WP (2002) Synthesis and chemical modification of poly(divinylsiloxane). Polymer 43:1753–1759

    Article  CAS  Google Scholar 

  53. Teng CJ, Weber WP, Cai G (2003) Anionic and cationic ring-opening polymerization of 2,2,4,4,6,6-hexamethyl-8,8-divinylcyclotetrasiloxane. Macromolecules 36:5126–5130

    Article  CAS  Google Scholar 

  54. Teng CJ, Weber WP, Cai G (2003) Acid and base catalyzed ring-opening polymerization of 2,2,4,4,6,6-hexamethyl-8,8-diphenylcyclotetrasiloxane. Polymer 44:4149–4155

    Article  CAS  Google Scholar 

  55. Schacher F, Müllner M, Schmalz H, Müller AHE (2009) New block copolymers with poly(N, N-dimethylaminoethyl methacrylate) as a double stimuli-responsive block. Macromol Chem Phys 210:256–262

    Article  CAS  Google Scholar 

  56. Esswein B, Möller M (1996) Polymerization of ethylene oxide with alkyllithium compounds and the phosphazene base “tBu-P4”. Angew Chem Int Ed 35:623–625

    Article  CAS  Google Scholar 

  57. Schmalz H, Lanzendörfer MG, Abetz V, Müller AHE (2003) Anionic polymerization of ethylene oxide in the presence of the phosphazene base ButP4 – kinetic investigations using in-situ FT-NIR spectroscopy and MALDI-TOF MS. Macromol Chem Phys 204:1056–1071

    Article  CAS  Google Scholar 

  58. Floudas G, Vazaiou B, Schipper F, Ulrich R, Wiesner U, Iatrou H, Hadjichristidis N (2001) Poly(ethylene oxide-b-isoprene) diblock copolymer phase diagram. Macromolecules 34:2947–2957

    Article  CAS  Google Scholar 

  59. Pispas S (2006) Double hydrophilic block copolymers of sodium(2-sulfamate-3-carboxylate)isoprene and ethylene oxide. J Polym Sci Part A Polym Chem 44:606–613

    Article  CAS  Google Scholar 

  60. Schmalz H, Knoll A, Müller AJ, Abetz V (2002) Synthesis and characterization of ABC triblock copolymers with two different crystalline end blocks: influence of confinement on crystallization behavior and morphology. Macromolecules 35:10004–10013

    Article  CAS  Google Scholar 

  61. Toy AA, Reinicke S, Müller AHE, Schmalz H (2007) One-pot synthesis of polyglycidol-containing block copolymers with alkyllithium initiators using the phosphazene base t-BuP4. Macromolecules 40:5241–5244

    Article  CAS  Google Scholar 

  62. Reinicke S, Schmelz J, Lapp A, Karg M, Hellweg T, Schmalz H (2009) Smart hydrogels based on double responsive triblock terpolymers. Soft Matter 5:2648–2657

    CAS  Google Scholar 

  63. Hans M, Keul H, Moeller M (2009) Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems. Polymer 50:1103–1108

    Article  CAS  Google Scholar 

  64. Molenberg A, Möller M (1997) Polymerization of cyclotrisiloxanes by organolithium compounds and P2-Et base. Macromol Chem Phys 198:717–726

    Article  CAS  Google Scholar 

  65. Kaljurand I, Rodima T, Leito I, Koppel IA, Schwesinger R (2000) Self-consistent spectrophotometric basicity scale in acetonitrile covering the range between pyridine and DBU. J Org Chem 65:6202–6208

    Article  CAS  Google Scholar 

  66. Grzelka A, Chojnowski J, Cypryk M, Fortuniak W, Hupfield PC, Taylor RG (2002) Polycondensation and disproportionation of an oligosiloxanol in the presence of a superbase. J Organomet Chem 660:14–26

    Article  CAS  Google Scholar 

  67. Ishio M, Katsube M, Ouchi M, Sawamoto M, Inoue Y (2009) Active, versatile, and removable iron catalysts with phosphazenium salts for living radical polymerization of methacrylates. Macromolecules 42:188–193

    Article  CAS  Google Scholar 

  68. Miyamoto N, Inoue Y, Koizumi S, Hashimoto T (2007) Living anionic polymerization of methyl methacrylate controlled by metal-free phosphazene catalyst as observed by small-angle neutron scattering, gel-permeation chromatography and UV-visible spectroscopy. J Appl Crystallogr 40:S568–S572

    Article  CAS  Google Scholar 

  69. Brocas A-L, Deffieux A, Le Malicot N, Carlotti S (2012) Combination of phosphazene base and triisobutylaluminum for the rapid synthesis of polyhydroxy telechelic poly(propylene oxide). Polym Chem 3:1189–1195

    Article  CAS  Google Scholar 

  70. Zhao J, Jeromenok J, Weber J, Schlaad H (2012) Thermoresponsive aggregation behavior of triterpene–poly(ethylene oxide) conjugates in water. Macromol Biosci 12:1272–1278

    Article  CAS  Google Scholar 

  71. Siebert M, Keul H, Möller M (2010) Synthesis of well-defined polystyrene-block-polyglycidol (PS-b-PG) block co-polymers by anionic polymerization. Des Monomers Polym 13:547–563

    Article  CAS  Google Scholar 

  72. Zhao J, Alamri H, Hadjichristidis N (2013) A facile metal-free “grafting-from” route from acrylamide-based substrate toward complex macromolecular combs. Chem Commun 49:7079–7081

    Article  CAS  Google Scholar 

  73. Isono T, Kamoshida K, Satoh Y, Takaoka T, S-i S, Satoh T, Kakuchi T (2013) Synthesis of star- and figure-eight-shaped polyethers by t-Bu-P4-catalyzed ring-opening polymerization of butylene oxide. Macromolecules 46:3841–3849

    Article  CAS  Google Scholar 

  74. Vasilenko NG, Rebrov EA, Muzafarov AM, Eßwein B, Striegel B, Möller M (1998) Preparation of multi-arm star polymers with polylithiated carbosilane dendrimers. Macromol Chem Phys 199:889–895

    Article  CAS  Google Scholar 

  75. Paulasaari JK, Weber WP (2000) Synthesis of hyperbranched polysiloxanes by base-catalyzed proton-transfer polymerization. Comparison of hyperbranched polymer microstructure and properties to those of linear analogues prepared by cationic or anionic ring-opening polymerization. Macromolecules 33:2005–2010

    Article  CAS  Google Scholar 

  76. Paulasaari JK, Weber WP (2000) Base catalyzed proton transfer polymerization of 1-hydroxypentamethylcyclotrisiloxane. Comparison of hyperbranched polymer microstructure and properties to those of highly regular linear analogs. Macromol Chem Phys 201:1585–1592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schlaad .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

BEMP:

2-tert-Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine

t-BuP1 :

tert-Butylimino-tris(dimethylamino)phosphorane

t-BuP2 :

1-tert-Butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene)

t-BuP4 :

1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene)

EtP2 :

1-Ethyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene)

D3 :

Hexamethylcyclotrisiloxane

D4 :

Octamethylcyclotetrasiloxane

D5 :

Decamethylcyclopentasiloxane

t-OctP1 :

tert-Octylimino-tris(dimethylamino)phosphorane

t-OctP4 :

1-tert-Octyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Zhao, J., Hadjichristidis, N., Schlaad, H. (2015). Polymerization Using Phosphazene Bases. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_9

Download citation

Publish with us

Policies and ethics