Skip to main content

Living Anionic Polymerization of Isocyanates

  • Chapter
Anionic Polymerization

Abstract

Polyisocyanates are rodlike polymers with dynamic helical conformations likely to be synthesized using anionic polymerization. Although many scientists have tried to obtain polyisocyanates with a controlled molecular weight and a narrow weight distribution, the trimerization precluded controlled polyisocyanate formation. To overcome the lack of a living nature, special anionic polymerizations were invented. The use of effective additives and dual functional initiators stabilized the living chain end to prevent the trimerization. These polymerizations eventually achieved the living nature indicating quantitative yield and predictable molecular weight and narrow molecular weight distribution. The state of art of anionic polymerization of isocyanates and the effective functionalization techniques led to synthesis of well-defined linear, telechelic, chiral, star, rod-coil block, and graft polymers. From the controlled molecular architectures, a comprehensive understanding on helical properties and morphologies for polyisocyanates and their block copolymers has been accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657

    Article  CAS  Google Scholar 

  2. Szwarc M (1956) ‘Living’ polymers. Nature 176:1168–1169

    Article  Google Scholar 

  3. Shashoua VE (1959) The homopolymerization of monoisocyanates. J Am Chem Soc 81:3156

    Article  CAS  Google Scholar 

  4. Shashoua VE, Sweeny W, Tietz RF (1960) The homopolymerization of monoisocyanates. J Am Chem Soc 82:866–873

    Article  CAS  Google Scholar 

  5. Bur AJ, Fetters LJ (1976) The chain structure, polymerization, and conformation of polyisocyanates. Chem Rev 76:727–746

    Article  CAS  Google Scholar 

  6. Okamoto Y, Nakano T (1994) Asymmetric polymerization. Chem Rev 94:349–372

    Article  CAS  Google Scholar 

  7. Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S (1995) A helical polymer with a cooperative response to chiral information. Science 268:1860–1866

    Article  CAS  Google Scholar 

  8. Okamoto Y (1996) Synthesis, characterization, and application of helical polymers. Macromol Symp 101:343–354

    Article  CAS  Google Scholar 

  9. Mayer S, Zentel R (2001) Chiral polyisocyanates, a special class of helical polymers. Prog Polym Sci 26:1973–2013

    Article  CAS  Google Scholar 

  10. Yashima E, Maeda K, Lida H, Furusho Y, Nagai K (2009) Helical polymers: synthesis, structures, and functions. Chem Rev 109:6102–6211

    Article  CAS  Google Scholar 

  11. Natta G, Dipietro J, Cambini M (1962) Crystalline polymers of phenyl- and n-butylisocyanates. Makromol Chem 56:200–207

    Article  CAS  Google Scholar 

  12. Iwakura Y, Uno K, Kobatashi N (1968) Polymerization of isocyanate. III. Chemical behavior and structure of polyisocyanates. J Polym Sci Part A Polym Chem 6:1087–1096

    Article  CAS  Google Scholar 

  13. Godfrey RA, Miller GW (1969) Block polymers of isocyanates and vinyl monomers by homogeneous anionic polymerization. J Polym Sci Part A Poly Chem 7:2387–2404

    Article  CAS  Google Scholar 

  14. Schneider NS, Furusaki S (1965) Chain stiffness in polyisocyanates. J Polym Sci Part A Gen Pap 3:933–948

    Article  CAS  Google Scholar 

  15. Lifson S, Felder CE, Green MM (1992) Helical conformations, internal motion and helix sense reversal in polyisocyanates, and the preferred helix sense of an optically active polyisocyanate. Macromolecules 25:4142–4148

    Article  CAS  Google Scholar 

  16. Troxell TC, Scheraga HA (1971) Electric dichroism and polymer conformation. II. Theory of electric dichroism, and measurements on poly(n-butyl isocyanate). Macromolecules 4:528–539

    Article  CAS  Google Scholar 

  17. Toneli AE (1974) Conformational characteristics of the poly(n-alkyl isocyanates). Macromolecules 7:628–631

    Article  Google Scholar 

  18. Cook R (1987) Flexibility in rigid rod poly(n-alkyl isocyanates). Macromolecules 20:1961–1964

    Article  CAS  Google Scholar 

  19. Cook R, Johnson RD, Wade CG, O’Leary DJ, Munoz B, Green MM (1990) Solvent dependence of the chain dimension of poly(n-hexyl isocyanate). Macromolecules 23:3454–3458

    Article  CAS  Google Scholar 

  20. Ute K, Fukunishi Y, Jha SK, Cheon K-S, Muñoz B, Hatada K, Green MM (1999) Dynamic NMR determination of the barrier for interconversion of the left- and right-handed helical conformations in a polyisocyanate. Macromolecules 32:1304–1307

    Article  CAS  Google Scholar 

  21. Green MM, Andreola C, Muñoz B, Reidy MP, Zero K (1988) Macromolecular stereochemistry: a cooperative deuterium isotope effect leading to a large optical rotation. J Am Chem Soc 110:4063–4065

    Article  CAS  Google Scholar 

  22. Green MM, Reidy MP, Johnson RD, Darling G, O’Leary DJ, Willson G (1989) Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeant and soldiers experiment. J Am Chem Soc 111:6452–6454

    Article  Google Scholar 

  23. Khatri CA, Pavlova Y, Green MM, Morawetz H (1997) Chiral solvation as a means to quantitatively characterize preferential solvation of a helical polymer in mixed solvents. J Am Chem Soc 119:6991–6995

    Article  CAS  Google Scholar 

  24. Goodman M, Chen S (1970) Optically active polyisocyanates. Macromolecules 3:398–402

    Article  CAS  Google Scholar 

  25. Goodman M, Chen S (1971) Optically active polyisocyanates II. Macromolecules 4:625–629

    Article  CAS  Google Scholar 

  26. Gu H, Nakamura Y, Sato T (1998) Optical rotation of random copolyisocyanates of chiral achiral monomers: sergeant and soldier copolymers. Macromolecules 31:6362–6368

    Article  CAS  Google Scholar 

  27. Green MM, Garetz BA, Munoz B, Chang H (1995) Majority rules in the copolymerization of mirror image isomers. J Am Chem Soc 117:4181–4182

    Article  CAS  Google Scholar 

  28. Jha SK, Cheon KS, Green MM, Selinger JV (1999) Chiral optical properties of a helical polymer synthesized from nearly racemic chiral monomers highly diluted with achiral monomers. J Am Chem Soc 121:1665–1673

    Article  CAS  Google Scholar 

  29. Nath GY, Samal S, Park S-Y, Murthy CN, Lee J-S (2006) Induction of helicity in poly(n-hexyl isocyanate) with terminal chiral residues. Macromolecules 39:5965–5966

    Article  CAS  Google Scholar 

  30. Caraculacu AA, Coseri S (2001) Isocyanates in polyaddition processes. Structure and reaction mechanism. Prog Polym Sci 26:799–851

    Article  CAS  Google Scholar 

  31. Lee J-S, Ryu S-W (1999) Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate. Macromolecules 32:2085–2087

    Article  CAS  Google Scholar 

  32. Ahn J-H, Shin Y-D, Kim S-Y, Lee J-S (2003) Synthesis of well-defined block copolymers of n-hexyl isocyanate with isoprene by living anionic polymerization. Polymer 44:3847–3854

    Article  CAS  Google Scholar 

  33. Iwakura Y, Uno K, Kobayashi N (1968) Polymerization of isocyanates. V. Thermal degradation of polyisocyanates. J Polym Sci Part A Poly Chem 6:2611–2620

    Article  CAS  Google Scholar 

  34. Durairaj B, Dimock AW, Samulski ET (1989) Investigation of the thermal degradation of alkyl isocyanate polymers by direct pyrolysis mass spectrometry. J Polym Sci Part A Poly Chem 27:3211–3225

    Article  CAS  Google Scholar 

  35. Se K, Iwata T (2011) Selective complete decomposition of poly(n-hexylisocyanate) and its use in a new molecular design method. J Polym Sci Part A Polym Chem 49:3939–3950

    Article  CAS  Google Scholar 

  36. Lien LTN, Kikuchi M, Narumi A, Nagai K, Kawaguchi S (2008) Preparation of α-, ω-end-functionalized poly(n-hexyl isocyanate) heterotelechelics. Polym J 40:1105–1112

    Article  CAS  Google Scholar 

  37. Bhattacharyya DN, Lee CL, Szwarc M (1965) Reactivities and conductivities of ions and ion pairs in polymerization processes. J Phys Chem 69:612–623

    Article  CAS  Google Scholar 

  38. Szwarc M (1983) Living polymers and mechanisms of anionic polymerization. Adv Polym Sci 49:1–177

    Article  Google Scholar 

  39. Aharoni SM (1979) Rigid backbone polymers. 2. Polyisocyanates and their liquid-crystal behavior. Macromolecules 12:94–103

    Article  CAS  Google Scholar 

  40. Okamoto Y, Nagamura Y, Hatada K, Khatri C, Green MM (1992) An unexpected chiral spiro tetramer offers mechanistic insight into an improved sodium cyanide initiated polymerization of n-hexyl isocyanate in toluene. Macromolecules 25:5536–5538

    Article  CAS  Google Scholar 

  41. Fetters LJ, Yu H (1971) Equilibrium conformation and “worm-like coil” configuration of poly(n-alkyl isocyanates). Macromolecules 4:385–389

    Article  CAS  Google Scholar 

  42. Bur AJ, Fetters LJ (1973) Intrinsic viscosity measurements on rodlike poly(n-butyl isocyanate) and poly(n-octyl isocyanate). Macromolecules 6:874–879

    Article  CAS  Google Scholar 

  43. Maeda K, Matsunaga M, Yamada H, Okamoto Y (1997) Synthesis and anionic polymerization of isocyanates bearing a carbamate group. Polym J 29:333–338

    Article  CAS  Google Scholar 

  44. Maeda K, Okamoto Y (1998) Synthesis and conformation of optically active poly(phenyl isocyanate)s bearing an ((S)-(α-methylbenzyl)carbamoyl) group. Macromolecules 31:1046–1052

    Article  CAS  Google Scholar 

  45. Maeda K, Okamoto Y (1998) Unusual conformational change of optically active poly(3-((S)-sec-butoxycarbonyl)phenyl isocyanate). Macromolecules 31:5164–5166

    Article  CAS  Google Scholar 

  46. Maeda K, Okamoto Y (1999) Synthesis and conformational characteristics of poly(phenyl isocyanate)s bearing an optically active ester group. Macromolecules 32:974–980

    Article  CAS  Google Scholar 

  47. Hino K, Maeda K, Okamoto Y (2000) Synthesis and structure of poly(phenyl isocyanate)s bearing an optically active alkoxyl group. J Phys Org Chem 13:361–367

    Article  CAS  Google Scholar 

  48. Wang J, Nomura R, Endo T (1996) Effect of samarium iodide on isocyanate-polymerization by alkyllithiums. Chem Lett 25:909–910

    Article  Google Scholar 

  49. Fukuwatari N, Sugimoto H, Inoue S (1996) Lanthanoid isopropoxide as a novel initiator for anionic polymerization of isocyanates. Macromol Rapid Commun 17:1–7

    Article  CAS  Google Scholar 

  50. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:2495–2496

    Article  CAS  Google Scholar 

  51. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  52. Karkhaneei E, Afkhami A, Shamsipur M (1996) Nuclear magnetic resonance studies of sodium ion complexes with several crown ethers in binary acetonitrile-dimethylsulfoxide mixtures. Polyhedron 15:1989–1994

    Article  CAS  Google Scholar 

  53. Schmitt VBJ, Schulz GV (1969) Über zwei formen des initiators Na-naphthalin und die bestimmung der „lebenden” kettenenden bei der anionischen polymerisation. Makromol Chem 121:184–204

    Article  CAS  Google Scholar 

  54. Löhr G, Schulz GV (1974) Kinetics of anionic polymerization of methylmethacrylate with caesium and sodium as counterions in tetrahydrofuran. Eur Polym J 10:121–130

    Article  Google Scholar 

  55. Jeuck H, Müller AHE (1982) Kinetics of the anionic polymerization of methyl methacrylate in tetrahydrofuran using lithium and potassium as counterions. Makromol Chem Rapid Commun 3:121–125

    Article  CAS  Google Scholar 

  56. Shin Y-D, Kim S-Y, Ahn J-H, Lee J-S (2001) Synthesis of poly(n-hexyl isocyanate) by controlled anionic polymerization in the presence of NaBPh4. Macromolecules 34:2408–2410

    Article  CAS  Google Scholar 

  57. Zobra G, Vazaios A, Pitsikalis M, Hadjichristidis N (2005) Anionic polymerization of n-hexyl isocyanate with monofunctional initiators. Synthesis of well-defined diblock copolymers with styrene and isoprene. J Polym Sci Part A Polym Chem 43:3533–3542

    Article  CAS  Google Scholar 

  58. Ahn J-H, Shin Y-D, Nath GY, Park S-Y, Rahman MS, Samal S, Lee J-S (2005) Unprecedented control over polymerization of n-hexyl isocyanate using an anionic initiator having synchronized function of chain-end protection. J Am Chem Soc 127:4132–4133

    Article  CAS  Google Scholar 

  59. Min J, Yoo H-S, Shah PN, Chae C-G, Lee J-S (2013) Enolate anionic initiator, sodium deoxybenzoin, for leading living natures by formation of aggregators at the growth chain ends. J Polym Sci Part A Polym Chem 51:1742–1748

    Article  CAS  Google Scholar 

  60. Min J, Shah PN, Ahn J-H, Lee J-S (2011) Effects of different reactive oxyanionic initiators on the anionic polymerization of n-hexyl isocyanate. Macromolecules 44:3211–3216

    Article  CAS  Google Scholar 

  61. Norman ROC, Norman JM (1993) Principles of organic synthesis, 3rd edn. Sprinder-Verlag, New York

    Book  Google Scholar 

  62. Hsieh HL, Quirk RP (1996) Anionic polymerization: principle and practical application. Marcel Dekker, New York

    Google Scholar 

  63. Pattern TE, Novak BM (1991) “Living” titanium(IV) catalyzed coordination polymerization of isocyanates. J Am Chem Soc 113:5065–5066

    Article  Google Scholar 

  64. Pattern TE, Novak BM (1993) Organotitanium(IV) compounds as catalysts for the polymerization of isocyanates: the polymerization of isocyanates with functionalized side-chains. Macromolecules 26:436–439

    Article  Google Scholar 

  65. Pattern TE, Novak BM (1996) Living organotitanium(IV)-catalyzed polymerizations of isocyanates. J Am Chem Soc 118:1906–1916

    Article  Google Scholar 

  66. Mourmouris S, Kostakis K, Pitisikalis M, Hadjichristidis N (2005) Polymerization of n-hexyl isocyanate with CpTiCl2(OR) (R = functional group or macromolecular chain): a route to ω-functionalized and block copolymers and terpolymers of n-hexyl isocyanate. J Polym Sci Part A Polym Chem 43:6503–6514

    Article  CAS  Google Scholar 

  67. Ishizu K, Hatoyama N, Uchida S (2007) Novel synthesis of rod-coil block copolymers by combination of coordination polymerization and ATRP. J Polym Sci Part A Polym Chem 45:4037–4042

    Article  CAS  Google Scholar 

  68. Liu X, Deng J, Wu Y, Zhang L (2012) Amphiphilic triblock terpolymers consisting of poly(n-hexyl isocyanate) and poly(ethylene glycol): preparation and characterization. Polymer 53:5717–5722

    Article  CAS  Google Scholar 

  69. Satoh T, Ihara R, Kawato D, Nishikawa N, Suemasa D, Kondo Y, Fuchise K, Sakai R, Kakuchi T (2012) Precise synthesis of clickable poly(n-hexyl isocyanate). Macromolecules 45:3677–3686

    Article  CAS  Google Scholar 

  70. Goodson SH, Novak BM (2001) Synthesis and characterization of wormlike three-arm poly(n-hexyl isocyanate) star polymers. Macromolecules 34:3849–3855

    Article  CAS  Google Scholar 

  71. Miyake GM, Weitekamp RA, Piunova VA, Grubbs RH (2012) Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J Am Chem Soc 134:14249–14254

    Article  CAS  Google Scholar 

  72. Okamoto Y, Matsuda M, Nakano T, Yashima E (1993) Asymmetric polymerization of isocyanates with optically active anionic initiators. Polym J 25:391–396

    Article  CAS  Google Scholar 

  73. Okamoto Y, Matsuda M, Nakano T, Yashima E (1994) Asymmetric polymerization of aromatic isocyanates with optically active anionic initiators. J Polym Sci Part A Polym Chem 32:309–315

    Article  CAS  Google Scholar 

  74. Maeda K, Matsuda M, Nakano T, Okamoto Y (1995) Chiroptical properties of oligomers of m-methylphenyl isocyanate bearing an optically active end-group. Polym J 27:141–146

    Article  CAS  Google Scholar 

  75. Shah PN, Min J, Kim H-J, Park S-Y, Lee J-S (2011) Chiroptical properties of graft copolymers containing chiral poly(n-hexyl isocyanate) as a side chain. Macromolecules 44:7917–7925

    Article  CAS  Google Scholar 

  76. Shah PN, Min J, Lee J-S (2012) “Governing initiation-supporting termination” in chiral poly(n-hexyl isocyanate). Chem Commun 48:826–828

    Article  CAS  Google Scholar 

  77. Pijper D, Feringa BL (2007) Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew Chem Int Ed 46:3693–3696

    Article  CAS  Google Scholar 

  78. Pijper D, Jongejan MGM, Meetsma A, Feringa BL (2008) Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J Am Chem Soc 130:4541–4552

    Article  CAS  Google Scholar 

  79. Higashihara T, Hayashi M, Hirao A (2011) Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog Polym Sci 36:323–375

    Article  CAS  Google Scholar 

  80. Kivinen A (1972) In: Patai S (ed) The chemistry of acyl halides. Mechanism of substitution at the COX group. Interscience, New York

    Google Scholar 

  81. Maeda K, Wakasone S, Shimomura K, Ikai T, Kanoh S (2012) Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant. Chem Commun 48:3342–3344

    Article  CAS  Google Scholar 

  82. Rahman MS, Samal S, Lee J-S (2007) Quantitative in situ coupling of living diblock copolymers for the preparation of amphiphilic coil-rod-coil triblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine). Macromolecules 40:9279–9283

    Article  CAS  Google Scholar 

  83. Rahman MS, Chengez M, Min J, Shah PN, Samal S, Lee J-S (2011) Functionalization of amphiphilic coil-rod-coil triblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine) with florescence moiety and C60. Polymer 52:1925–1931

    Article  CAS  Google Scholar 

  84. Khatri CA, Vaidya MM, Levon K, Jha SK, Green MM (1995) Synthesis and molecular composites of functionalized polyisocyanates. Macromolecules 28:4719–4728

    Article  CAS  Google Scholar 

  85. Sakai R, Satoh T, Kakuchi R, Kaga H, Kakuchi T (2003) Macromolecular helicity induction for novel optically inactive poly(phenyl isocyanate) bearing crown ether based on the host-guest complexation. Macromolecules 36:3709–3713

    Article  CAS  Google Scholar 

  86. Sakai R, Otsuka I, Satoh T, Kakuchi R, Kaga H, Kakuchi T (2006) Chiral discrimination of a helically organized crown ether array parallel to the helix axis of polyisocyanate. J Polym Sci Part A Polym Chem 44:325–334

    Article  CAS  Google Scholar 

  87. Sakai R, Satoh T, Kakuchi R, Kaga H, Kakuchi T (2004) Helicity induction of polyisocyanate with a crown cavity on the main chain synthesized by cyclopolymerization of α, ω-diisocyanate. Macromolecules 37:3996–4003

    Article  CAS  Google Scholar 

  88. Ahn J-H, Lee C-H, Shin Y-D, Lee J-S (2004) Generation of highly stable amidate anion in anionic polymerization of 3-(triethylsilyl)propyl isocyanate. J Polym Sci Part A Polym Chem 42:933–940

    Article  CAS  Google Scholar 

  89. Han SH, Wu JW, Kang J-W, Shin Y-D, Lee J-S, Kim J-J (2001) Induced chirality in a polyisocyanate polymeric film and the change in polarization rotation under an external electric field. J Opt Soc Am B 18:298–301

    Article  CAS  Google Scholar 

  90. Shin Y-D, Ahn J-H, Lee J-S (2001) Anionic polymerization of isocyanates with optical functionalities. Polymer 42:7979–7985

    Article  CAS  Google Scholar 

  91. Shin Y-D, Ahn J-H, Lee J-S (2001) Anionic polymerization of chiral isocyanate and influence of the initiator on changes in the optical activity. Macromol Rapid Commun 22:1041–1045

    Article  CAS  Google Scholar 

  92. Chun C, Seo E-M, Kim M-J, Shin Y-D, Lee J-S, Kim D-Y (2007) Photoinduced behaviors of isocyanate-based azo molecular glass and polymer. Opt Mater 29:970–974

    Article  CAS  Google Scholar 

  93. Shin Y-D, Rahman MS, Samal S, Lee J-S (2006) The effect of alkyl side chain and additives on the anionic polymerization of isocyanates with carbamate group. Macromol Symp 240:151–156

    Article  CAS  Google Scholar 

  94. Rahman MS, Yoo H-S, Changez M, Lee J-S (2009) Living anionic polymerization of isocyanate containing a reactive carbamate group. Macromolecules 42:3927–3932

    Article  CAS  Google Scholar 

  95. Maeda K, Yamamoto N, Okamoto Y (1998) Helicity induction of poly(3-carboxyphenyl isocyanate) by chiral acid-base interaction. Macromolecules 31:5924–5926

    Article  CAS  Google Scholar 

  96. Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  Google Scholar 

  97. Holye CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  98. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) The Diels-Alder reaction in total synthesis. Angew Chem Int Ed 49:1540–1573

    Google Scholar 

  99. Zuen H, Gandini A (1991) Crystalline furanic polyisocyanate. Polym Bull 26:383–390

    Article  CAS  Google Scholar 

  100. Min J, Shah PN, Chae C-G, Lee J-S (2012) Arrangement of C60 via self-assembly of post-functionalizable polyisocyanate block copolymer. Macromol Rapid Commun 33:2029–2034

    Article  CAS  Google Scholar 

  101. Stupp SI (1997) Supramolecular materials: self-organized nanostructures. Science 276:384–389

    Article  CAS  Google Scholar 

  102. Lee M, Cho B-K, Zin W-C (2001) Supramolecular structures from rod-coil block copolymers. Chem Rev 101:3869–3892

    Article  CAS  Google Scholar 

  103. Hadjichristidis N, Prispas S, Floudas GA (2003) Block copolymers. Wiley-VCH, New York

    Google Scholar 

  104. Fetters LJ (1969) Synthesis of block polymers by homogeneous anionic polymerization. J Polym Sci Part C Polym Symp 26:1–35

    Article  Google Scholar 

  105. Ahn J-H, Lee J-S (2003) Synthesis of well-defined rod-coil-rod polyhexylisocyanate-block-polystyrene-block-polyhexylisocyanate via one-pot anionic polymerization. Macromol Rapid Commun 24:571–575

    Article  CAS  Google Scholar 

  106. Rahman MS, Samal S, Lee J-S (2006) Synthesis and self-assembly studies of amphiphilic poly(n-hexyl isocyanate)-block-poly(2-vinylpyridine)-block-poly(n-hexyl isocyanate) rod-coil-rod triblock copolymer. Macromolecules 39:5009–5014

    Article  CAS  Google Scholar 

  107. Vazaios A, Pitsikalis M, Hadjichristidis N (2003) Triblock copolymers and pentablock terpolymers of n-hexyl isocyanate with styrene and isoprene: synthesis, characterization, and thermal properties. J Polym Sci Part A Polym Chem 41:3094–3102

    Article  CAS  Google Scholar 

  108. Shin Y-D, Han S-H, Samal S, Lee J-S (2005) Synthesis of poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) amphiphilic coil-rod block copolymer by anionic polymerization. J Polym Sci Part A Polym Chem 43:607–615

    Article  CAS  Google Scholar 

  109. Bilalis P, Zorba G, Pitsikalis M, Hadjichristidis N (2006) Synthesis of poly(n-hexyl isocyanate-b-N-vinylpyrrolidone) block copolymers by the combination of anionic and nitroxide-mediated radical polymerizations: micellization properties in aqueous solution. J Polym Sci Part A Polym Chem 44:5719–5728

    Article  CAS  Google Scholar 

  110. Han M, Rahman MS, Lee J-S, Khim D, Kim D-Y, Park J-W (2011) Surface-grafted rodlike polymers: adaptive self-assembled monolayers and rapid photo-patterning of surfaces. Chem Mater 23:3517–3524

    Article  CAS  Google Scholar 

  111. Zorba G, Pitsikalis M, Hadjichristidis N (2006) Novel well-defined star homopolymers and star-block copolymers of poly(n-hexyl isocyanate) by anionic polymerization. J Polym Sci Part A Polym Chem 45:2387–2399

    Article  CAS  Google Scholar 

  112. Rahman MS, Changez M, Yoo J-W, Lee CH, Samal S, Lee J-S (2008) Synthesis of amphiphilic miktoarm star copolymers of poly(n-hexyl isocyanate) and poly(ethylene glycol) through reaction with the active methylene group. Macromolecules 41:7029–7032

    Article  CAS  Google Scholar 

  113. Shah PN, Min J, Chae C-G, Nishikawa N, Suemasa D, Kakuchi T, Satoh T, Lee J-S (2012) “Helicity inversion”: linkage effects of chiral poly(n-hexyl isocyanate)s. Macromolecules 45:8961–8969

    Article  CAS  Google Scholar 

  114. Koh H-D, Changez M, Rahman MS, Lee J-S (2009) Formation of intermicellar-chained and cylindrical micellar networks from an amphiphilic rod-coil block copolymer: poly(n-hexyl isocyanate)-block-poly(2-vinylpyridine). Langmuir 25:7188–7192

    Article  CAS  Google Scholar 

  115. Changez M, Kang N-G, Koh H-D, Lee J-S (2010) Effect of solvent composition on transformation of micelles to vesicles of rod-coil poly(n-hexyl isocyanate-block-2-vinylpyridine) diblock copolymers. Langmuir 26:9981–9985

    Article  CAS  Google Scholar 

  116. Koh H-D, Park J-W, Rahman MS, Changez M, Lee J-S (2009) Reversibly interchangeable, chain-wrapped micelles and vesicles of an amphiphilic rod-coil block copolymer. Chem Commun 32:4824–4826

    Article  CAS  Google Scholar 

  117. Kim J-H, Rahman MS, Lee J-S, Park J-W (2007) Liquid crystalline ordering in the self-assembled monolayers of tethered rodlike polymers. J Am Chem Soc 129:7756–7757

    Article  CAS  Google Scholar 

  118. Kim J-H, Rahman MS, Lee J-S, Park J-W (2008) Self-organization of an amphiphilic rod-coil-rod block copolymer into liquid crystalline, substrate-supported monolayers and bilayers. Macromolecules 41:3181–3189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “GIST-Caltech Research Collaboration” Project through a grant provided by GIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Suk Lee .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

1,4-DVB:

1,4-Divinylbenzene

2VP:

2-Vinylpyridine

3MeOPI:

3-Methoxyphenyl isocyanate

AIBN:

2,2′-Azobisisobutyronitrile

C60 :

Fullerene

calcd:

Calculated

CCD effect:

Covalent chiral domino effect

CD:

Circular dichroism

DCCD effect:

Double covalent chiral domino effect

DMF:

N,N-Dimethylformamide

DNA:

Deoxyribonucleic acid

DPM-K:

Diphenylmethyl potassium

GIST effect:

Governing initiation-supporting termination effect

HIC:

n-Hexyl isocyanate

K-Naph:

Potassium naphthalenide

Li-Naph:

Lithium naphthalenide

M helix:

Left-handed helix

MAHI:

Methoxycarbonylaminohexyl isocyanate

M n :

Number-average molecular weight

M-Naph:

Metal naphthalenide

M w/M :

Molecular weight distribution

M w :

Weight-average molecular weight

Na-BA:

Sodium benzanilide

Na-BH:

Sodium benzhydroxide

NaBPh4 :

Sodium tetraphenylborate

Na-DB:

Sodium deoxybenzoin

Na-DPM:

Diphenylmethyl sodium

Na-Naph:

Sodium naphthalenide

obsd:

Observed

P helix:

Right-handed helix

P2VP:

Poly(2-vinylpyridine)

P2VP-b-PHIC:

Poly(2-vinylpyridine)-block-poly(n-hexyl isocyanate)

P2VP-b-PHIC-b-P2VP:

Poly(2-vinylpyridine)-block-poly(n-hexyl isocyanate)-block-poly(2-vinylpyridine)

PAHI:

n-Propyloxycarbonylaminohexyl isocyanate

PEAHI:

n-Pentyloxycarbonylaminohexyl

PEG:

Poly(ethylene glycol)

PFIC:

Poly(furfuryl isocyanate)

PFIC-b-PHIC:

Poly(furfuryl isocyanate)-block-poly(n-hexyl isocyanate)

PHIC:

Poly(n-hexyl isocyanate)

PHIC-b-P2VP-b-PHIC:

Poly(n-hexyl isocyanate)-block-poly(2-vinylpyridine)-block-poly(n-hexyl isocyanate)

PHIC-b-PTMSPMA:

Poly(n-hexyl isocyanate)-block-poly(3-(trimethoxysilyl)propyl methacrylate)

PHIC-b-PVP:

Poly(n-hexyl isocyanate)-block-poly(N-vinylpyrrolidone)

PI:

Polyisoprene

PI-b-PHIC:

Polyisoprene-block-poly(n-hexyl isocyanate)

PPA:

Poly(phenylacetylene)

PPA-g-P3MeOPI:

Poly(phenyl acetylene)-graft-poly(3-methoxyphenyl isocyanate)

PS:

Polystyrene

PS-g-PHIC:

Polystyrene-graft-poly(n-hexyl isocyanate)

PTESPI:

Poly(3-(triethoxysilyl)propyl isocyanate)

PTMSPMA:

Poly(3-(trimethoxysilyl)propyl methacrylate)

PVP:

Poly(N-vinylpyrrolidone)

Rh(nbd)BPh4 :

Rh+(2,5-norbornadiene)[(η 6-C6H5)B-(C6H5)3]

RNA:

Ribonucleic acid

SEC:

Size exclusion chromatography

SEC-MALLS:

Size exclusion chromatography-multiangle laser light scattering

TEMPO-ONa:

Sodium-4-oxy-2,2,6,6-tetramethylpiperidinyloxy

TESPI:

3-(Triethoxysilyl)propyl isocyanate

THF:

Tetrahydrofuran

TMSPMA:

3-(Trimethoxysilyl)propyl methacrylate

VP:

N-Vinylpyrrolidone

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Chae, CG., Seo, HB., Lee, JS. (2015). Living Anionic Polymerization of Isocyanates. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_7

Download citation

Publish with us

Policies and ethics