Skip to main content

Surface-Initiated Anionic Polymerization from Nanomaterials

  • Chapter

Abstract

Surface-initiated anionic polymerization is one of the many techniques used for the modification of organic and inorganic nanomaterials. Surface modification of nanomaterials using polymers is a unique way to reduce interface incompatibility of nanomaterials for applications in new technologies. The properties of nanomaterials strongly depend on their compatibility with organic phases either in bulk or in solution. This chapter focuses on surface grafting of polymers using living anionic polymerization from various nanomaterials and provides accounts on the developments in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) Staudinger H (1920) Über polymerisation. Ber Deut Chem Ges 53(6):1073. doi:10.1002/cber.19200530627; (b) Paul JF (1953) Principles of polymer chemistry. Cornell University Press, USA; (c) Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology, Wiley, Weinheim

  2. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575. doi:10.1177/0021998306067321

    Article  CAS  Google Scholar 

  3. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. doi:10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  4. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520. doi:10.1126/science.1164865

    Article  CAS  Google Scholar 

  5. Tang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413–U418. doi:10.1038/nmat906

    Article  CAS  Google Scholar 

  6. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375. doi:10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  7. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205. doi:10.1021/ma060733p

    Article  CAS  Google Scholar 

  8. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. doi:10.1016/s0266-3538(01)00094-x

    Article  CAS  Google Scholar 

  9. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35. doi:10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  10. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12(10):750–753. doi:10.1002/(sici)1521-4095(200005)12:10<750::aid-adma750>3.0.co;2-6

    Article  CAS  Google Scholar 

  11. Wittmer JP, Cates ME, Johner A, Turner MS (1996) Diffusive growth of a polymer layer by in situ polymerization. Europhys Lett 33(5):397–402. doi:10.1209/epl/i1996-00347-0

    Article  CAS  Google Scholar 

  12. Advincula R (2006) Polymer brushes by anionic and cationic Surface-Initiated Polymerization (SIP). In: Jordan R (ed) Surface-initiated polymerization I, vol 197, Advances in polymer science. Springer, Berlin, pp 107–136. doi:10.1007/12_066

    Chapter  Google Scholar 

  13. Zhou Q, Nakamura Y, Inaoka S, Park M, Wang Y, Mays J (2002) In: Krishnamoorti R, Vaia R A (eds) Polymer nanocomposites. ACS symposium series No 804. American Chemical Society, Washington, DC

    Google Scholar 

  14. Zhou QY, Fan XW, Xia CJ, Mays J, Advincula R (2001) Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces. Chem Mater 13(8):2465–2467. doi:10.1021/cm0101780

    Article  CAS  Google Scholar 

  15. Quirk RP, Mathers RT (2001) Surface-initiated living anionic polymerization of isoprene using a 1,1-diphenylethylene derivative and functionalization with ethylene oxide. Polym Bull (Berlin) 45:471–477. doi:10.1007/s002890170100

    Article  CAS  Google Scholar 

  16. Advincula R, Zhou Q, Mays J (2001) Nanocomposite materials by surface initiated polymerization on silicate, clay, and Si-gel surfaces: Preparation of high performance barrier materials. Polym Mater Sci Eng 84:875

    CAS  Google Scholar 

  17. Quirk RP, Mathers RT (2001) Surface grafting to and from 1,1-diphenylethylene using a surface-bound monolayer and functionalization of the living chain ends with ethylene oxide. Polym Mater Sci Eng 84:873

    CAS  Google Scholar 

  18. Quirk RP, Mathers RT (2001) Surface grafted poly(isoprene-block-ethylene oxide) diblock copolymer brushes from a 1,1-diphenylethylene surface-bound monolayer. Polym Mater Sci Eng 85:198

    CAS  Google Scholar 

  19. Zhou Q, Fan X, Xia C, Mays J, Advincula R (2001) Anionic polymerization initiated from Si-gel and clay nanoparticle surfaces. Polym Mater Sci Eng 84:835

    CAS  Google Scholar 

  20. Zhou Q, Nakamura Y, Inaoka S, Park M, Wang Y, Mays J, Advincula R (2000) Surface initiated anionic polymerization on silica and silicate surfaces. Polym Mater Sci Eng 82:290

    CAS  Google Scholar 

  21. Zhou Q, Wang S, Fan X, Mays J, Advincula R, Sakellariou G, Pispas S, Hadjichristides N (2001) Nanocomposite materials prepared by surface initiated anionic polymerization from Si-gel and clay nanoparticle surfaces: homopolymers and block-copolymers. Polym Prepr (Am Chem Soc Div Polym Chem) 42:59

    Google Scholar 

  22. Quirk RP, Mathers RT, Cregger T, Foster MD (2002) Anionic synthesis of block copolymer brushes grafted from a 1,1-diphenylethylene monolayer. Macromolecules 35(27):9964–9974. doi:10.1021/ma011536n

    Article  CAS  Google Scholar 

  23. Baskaran D, Sivaram S (1997) Specific salt effect of lithium perchlorate in living anionic polymerization of methyl methacrylate and tert-butyl acrylate. Macromolecules 30(6):1550–1555. doi:10.1021/ma961118w

    Article  CAS  Google Scholar 

  24. Wiles DM, Bywater S (1965) Polymerization of methyl methacrylate initiated by 1,1-diphenylhexyl lithium. Trans Faraday Soc 61(505P):150–158. doi:10.1039/tf9656100150

    Article  CAS  Google Scholar 

  25. Jordan R, Ulman A, Kang JF, Rafailovich MH, Sokolov J (1999) Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers. J Am Chem Soc 121(5):1016–1022. doi:10.1021/ja981348l

    Article  CAS  Google Scholar 

  26. Milner ST, Witten TA, Cates ME (1988) Theory of the grafted polymer brush. Macromolecules 21(8):2610–2619. doi:10.1021/ma00186a051

    Article  CAS  Google Scholar 

  27. Sakellariou G, Park M, Advincula R, Mays JW, Hadjichristidis N (2006) Homopolymer and block copolymer brushes on gold by living anionic surface-initiated polymerization in a polar solvent. J Polym Sci Polym Chem 44(2):769–782. doi:10.1002/pola.21195

    Article  CAS  Google Scholar 

  28. Fan XW, Zhou QY, Xia CJ, Cristofoli W, Mays J, Advincula R (2002) Living anionic surface-initiated polymerization (LASIP) of styrene from clay nanoparticles using surface bound 1,1-diphenylethylene (DPE) initiators. Langmuir 18(11):4511–4518. doi:10.1021/la025556+

    Article  CAS  Google Scholar 

  29. Oosterling M, Sein A, Schouten AJ (1992) Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides. Polymer 33(20):4394–4400. doi:10.1016/0032-3861(92)90286-6

    Article  CAS  Google Scholar 

  30. Zhou QY, Wang SX, Fan XW, Advincula R, Mays J (2002) Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18(8):3324–3331. doi:10.1021/la015670c

    Article  CAS  Google Scholar 

  31. Advincula R, Zhou QG, Park M, Wang SG, Mays J, Sakellariou G, Pispas S, Hadjichristidis N (2002) Polymer brushes by living anionic surface initiated polymerization on flat silicon (SiO(x)) and gold surfaces: homopolymers and block copolymers. Langmuir 18(22):8672–8684. doi:10.1021/la025962t

    Article  CAS  Google Scholar 

  32. Kim CJ, Sondergeld K, Mazurowski M, Gallei M, Rehahn M, Spehr T, Frielinghaus H, Stuhn B (2013) Synthesis and characterization of polystyrene chains on the surface of silica nanoparticles: comparison of SANS, SAXS, and DLS results. Colloid Polym Sci 291(9):2087–2099. doi:10.1007/s00396-013-2923-z

    Article  CAS  Google Scholar 

  33. Khan M, Huck WTS (2003) Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization. Macromolecules 36(14):5088–5093. doi:10.1021/ma0340762

    Article  CAS  Google Scholar 

  34. Tsubokawa N, Yoshihara T, Sone Y (1992) Grafting of polymers onto carbon whisker by anionic graft-polymerization of vinyl monomers using metallized aromatic rings and or phenoxy lithium groups on the surface as initiator. J Polym Sci A Polym Chem 30(4):561–567. doi:10.1002/pola.1992.080300406

    Article  CAS  Google Scholar 

  35. Lu W, Ruan GD, Genorio B, Zhu Y, Novosel B, Peng ZW, Tour JM (2013) Functionalized graphene nanoribbons via anionic polymerization initiated by alkali metal-intercalated carbon nanotubes. ACS Nano 7(3):2669–2675. doi:10.1021/nn400054t

    Article  CAS  Google Scholar 

  36. Zhang XQ, Fan XY, Li HZ, Yan C (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22(45):24081–24091. doi:10.1039/c2jm34243j

    Article  CAS  Google Scholar 

  37. Viswanathan G, Chakrapani N, Yang HC, Wei BQ, Chung HS, Cho KW, Ryu CY, Ajayan PM (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc 125(31):9258–9259. doi:10.1021/ja0354418

    Article  CAS  Google Scholar 

  38. Chen SM, Chen DY, Wu GZ (2006) Grafting of poly(tBA) and PtBA-b-PMMA onto the surface of SWNTs using carbanions as the initiator. Macromol Rapid Commun 27(11):882–887. doi:10.1002/marc.200600049

    Article  CAS  Google Scholar 

  39. Liang F, Beach JM, Kobashi K, Sadana AK, Vega-Cantu YI, Tour JM, Billups WE (2006) In situ polymerization initiated by single-walled carbon nanotube salts. Chem Mater 18(20):4764–4767. doi:10.1021/cm0607536

    Article  CAS  Google Scholar 

  40. Sakellariou G, Ji HN, Mays JW, Baskaran D (2008) Enhanced polymer grafting from multiwalled carbon nanotubes through living anionic surface-initiated polymerization. Chem Mater 20(19):6217–6230. doi:10.1021/cm801449t

    Article  CAS  Google Scholar 

  41. Yoon KR, Kim WJ, Choi IS (2004) Functionalization of shortened single-walled carbon nanotubes with poly (p-dioxanone) by ‘Grafting-From’ approach. Macromol Chem Phys 205(9):1218–1221. doi:10.1002/macp.200400077

    Article  CAS  Google Scholar 

  42. Zhou L, Gao C, Xu WJ (2009) Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phys 210(12):1011–1018. doi:10.1002/macp.200900134

    Article  CAS  Google Scholar 

  43. Adeli M, Mirab N, Alavidjeh MS, Sobhani Z, Atyabi F (2009) Carbon nanotubes-graft-polyglycerol: biocompatible hybrid materials for nanomedicine. Polymer 50(15):3528–3536. doi:10.1016/j.polymer.2009.05.052

    Article  CAS  Google Scholar 

  44. Buffa F, Hu H, Resasco DE (2005) Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of epsilon-caprolactone. Macromolecules 38(20):8258–8263. doi:10.1021/ma050876w

    Article  CAS  Google Scholar 

  45. Zeng HL, Gao C, Yan DY (2006) Poly(epsilon-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16(6):812–818. doi:10.1002/adfm.200500607

    Article  CAS  Google Scholar 

  46. Castro M, Lu J, Bruzaud S, Kumar B, Feller J-F (2009) Carbon nanotubes/poly(epsilon-caprolactone) composite vapour sensors. Carbon 47(8):1930–1942. doi:10.1016/j.carbon.2009.03.037

    Article  CAS  Google Scholar 

  47. Ruelle B, Peeterbroeck S, Gouttebaron R, Godfroid T, Monteverde F, Dauchot J-P, Alexandre M, Hecq M, Dubois P (2007) Functionalization of carbon nanotubes by atomic nitrogen formed in a microwave plasma Ar + N-2 and subsequent poly(epsilon-caprolactone) grafting. J Mater Chem 17(2):157–159. doi:10.1039/b613581c

    Article  CAS  Google Scholar 

  48. Yang Y, Tsui CP, Tang CY, Qiu S, Zhao Q, Cheng X, Sun Z, Li RKY, Xie X (2010) Functionalization of carbon nanotubes with biodegradable supramolecular polypseudorotaxanes from grafted-poly(epsilon-caprolactone) and alpha-cyclodextrins. Eur Polym J 46(2):145–155. doi:10.1016/j.eurpolymj.2009.10.020

    Article  CAS  Google Scholar 

  49. Priftis D, Sakellariou G, Hadjichristidis N, Penott EK, Lorenzo AT, Muller AJ (2009) Surface modification of multiwalled carbon nanotubes with biocompatible polymers via ring opening and living anionic surface initiated polymerization. Kinetics and crystallization behavior. J Polym Sci Polym Chem 47(17):4379–4390. doi:10.1002/pola.23491

    Article  CAS  Google Scholar 

  50. Priftis D, Sakellariou G, Mays JW, Hadjichristidis N (2010) Novel diblock copolymer-grafted multiwalled carbon nanotubes via a combination of living and controlled/living surface polymerizations. J Polym Sci Polym Chem 48(5):1104–1112. doi:10.1002/pola.23865

    Article  CAS  Google Scholar 

  51. Chen G-X, Kim H-S, Park B-H, Yoon J-S (2007) Synthesis of poly(L-lactide)-functionalized multiwalled carbon nanotubes by ring-opening polymerization. Macromol Chem Phys 208(4):389–398. doi:10.1002/macp.200600411

    Article  CAS  Google Scholar 

  52. Kim H-S, Park B-H, Yoon J-S, Jin H-J (2007) Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43(5):1729–1735. doi:10.1016/j.eurpolymj.2007.02.025

    Article  CAS  Google Scholar 

  53. Kim H-S, Chae Y-S, Park B-H, Yoon J-S, Kang M-S, Jin H-J (2008) Thermal and electrical conductivity of poly(L-lactide)/multiwalled carbon nanotube nanocomposites. Curr Appl Phys 8(6):803–806. doi:10.1016/j.cap.2007.04.032

    Article  Google Scholar 

  54. Priftis D, Petzetakis N, Sakellariou G, Pitsikalis M, Baskaran D, Mays JW, Hadjichristidis N (2009) Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbon nanotubes. Macromolecules 42(9):3340–3346. doi:10.1021/ma8027479

    Article  CAS  Google Scholar 

  55. Chakoli AN, Wan J, Feng J, Amirian M, Sui J, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly(L-lactide-co-epsilon-caprolactone) biodegradable copolymers. Appl Surf Sci 256(1):170–177. doi:10.1016/j.apsusc.2009.07.103

    Article  CAS  Google Scholar 

  56. Feng J, Cai W, Sui J, Li Z, Wan J, Chakoli AN (2008) Poly(L-lactide) brushes on magnetic multiwalled carbon nanotubes by in-situ ring-opening polymerization. Polymer 49(23):4989–4994. doi:10.1016/j.polymer.2008.09.022

    Article  CAS  Google Scholar 

  57. Yao Y, Li W, Wang S, Yan D, Chen X (2006) Polypeptide modification of multiwalled carbon nanotubes by a graft-from approach. Macromol Rapid Commun 27(23):2019–2025. doi:10.1002/marc.200600447

    Article  CAS  Google Scholar 

  58. Li J, He W, Yang L, Sun X, Hua Q (2007) Preparation of multi-walled carbon nanotubes grafted with synthetic poly(L-lysine) through surface-initiated ring-opening polymerization. Polymer 48(15):4352–4360. doi:10.1016/j.polymer.2007.05.076

    Article  CAS  Google Scholar 

  59. Tang H, Zhang D (2010) Poly(gamma-benzyl-l-glutamate)-functionalized single-walled carbon nanotubes from surface-initiated ring-opening polymerizations of N-carboxylanhydride. J Polym Sci Pol Chem 48(11):2340–2350. doi:10.1002/pola.24001

    Article  CAS  Google Scholar 

  60. Qu LW, Veca LM, Lin Y, Kitaygorodskiy A, Chen BL, McCall AM, Connell JW, Sun YP (2005) Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface. Macromolecules 38(24):10328–10331. doi:10.1021/ma051762n

    Article  CAS  Google Scholar 

  61. Yang M, Gao Y, Li H, Adronov A (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45(12):2327–2333. doi:10.1016/j.carboji.2007.07.021

    Article  CAS  Google Scholar 

  62. Yan D, Yang G (2009) A novel approach of in situ grafting polyamide 6 to the surface of multi-walled carbon nanotubes. Mater Lett 63(2):298–300. doi:10.1016/j.matlet.2008.10.013

    Article  CAS  Google Scholar 

  63. Yan D, Yang G (2009) Synthesis and properties of homogeneously dispersed polyamide 6/mwnts nanocomposites via simultaneous in situ anionic ring-opening polymerization and compatibilization. J Appl Polym Sci 112(6):3620–3626. doi:10.1002/app.29783

    Article  CAS  Google Scholar 

  64. Tanaka M, Sudo A, Sanda F, Endo T (2000) Samarium enolate on crosslinked polystyrene beads: anionic initiator for well defined synthesis of polymethacrylate on a solid support. Chem Commun 24:2503–2504. doi:10.1039/b007259l

    Article  Google Scholar 

  65. Tanaka M, Sudo A, Sanda F, Endo T (2003) Samarium enolate on crosslinked polystyrene beads. II. An anionic initiator for the well-defined synthesis of poly(allyl methacrylate) on a solid support. J Polym Sci Polym Chem 41(6):853–860. doi:10.1002/pola.10626

    Article  CAS  Google Scholar 

  66. Tanaka M, Sudo A, Endo T (2004) Samarium enolate on crosslinked polystyrene beads. III. Anionic initiator for well-defined synthesis of poly(hydroxyethyl methacrylate) on solid support. J Polym Sci Polym Chem 42(17):4417–4423. doi:10.1002/pola.20210

    Article  CAS  Google Scholar 

  67. Minoura Y, Katano M (1969) Graft copolymerization of styrene with carbon black-alkali metal complex. J Appl Polym Sci 13 (10):2057–2068. doi:10.1002/app.1969.070131003

  68. Ohkita K, Nakayama N, Shimomura M (1980) The polymerization of styrene catalyzed by normal-butyllithium in the presence of carbon-black. Carbon 18(4):277–280. doi:10.1016/0008-6223(80)90051-2

    Article  CAS  Google Scholar 

  69. Tsubokawa N, Funaki A, Hada Y, Sone Y (1982) Grafting polyesters onto carbon-black. I. Polymerization of beta-propiolactone initiated by alkali-metal carboxylate group on the surface of carbon-black. J Polym Sci Polym Chem 20(12):3297–3304. doi:10.1002/pol.1982.170201204

    Article  CAS  Google Scholar 

  70. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186. doi:10.1080/00018730110113644

    Article  CAS  Google Scholar 

  71. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  72. Stein C, Gole J (1966) Anionic polymerization of dienes under the effect of insertion products of alkaline metals into graphite. Bull Soc Chim Fr 10:3175–3181

    Google Scholar 

  73. Leroux F, Besse JP (2001) Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem Mater 13(10):3507–3515. doi:10.1021/cm0110268

    Article  CAS  Google Scholar 

  74. Sun LY, Xiao M, Liu JJ, Gong K (2006) A study of the polymerization of styrene initiated by K-THF-GIC system. Eur Polym J 42(2):259–264. doi:10.1016/j.eurpolymj.2005.07.014

    Article  CAS  Google Scholar 

  75. Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527. doi:10.1021/cr900045a

    Article  CAS  Google Scholar 

  76. Pyun J, Kowalewski T, Matyjaszewski K (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 24(18):1043–1059. doi:10.1002/marc.200300078

    Article  CAS  Google Scholar 

  77. Sakellariou G, Priftis D, Baskaran D (2013) Surface-initiated polymerization from carbon nanotubes: strategies and perspectives. Chem Soc Rev 42(2):677–704. doi:10.1039/c2cs35226e

    Article  CAS  Google Scholar 

  78. Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Edit 43(16):2138–2142. doi:10.1002/anie.200353329

    Article  CAS  Google Scholar 

  79. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22. doi:10.1039/b210143m

    Article  CAS  Google Scholar 

  80. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. doi:10.1021/cr9901337

    Article  CAS  Google Scholar 

  81. Baskaran D, Sakellariou G, Mays JW, Bratcher MS (2007) Grafting reactions of living macroanions with multi-walled carbon nanotubes. J Nanosci Nanotechnol 7(4–5):1560–1567. doi:10.1166/jnn.2007.459

    Article  CAS  Google Scholar 

  82. Sakellariou G, Ji H, Mays JW, Hadjichristidis N, Baskaran D (2007) Controlled covalent functionalization of multiwalled carbon nanotubes using 4 + 2 cycloaddition of benzocyclobutenes. Chem Mater 19(26):6370–6372. doi:10.1021/cm702470x

    Article  CAS  Google Scholar 

  83. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107(12):5813–5840. doi:10.1021/cr068415b

    Article  CAS  Google Scholar 

  84. Gao C, He H, Zhou L, Zheng X, Zhang Y (2009) Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mater 21(2):360–370. doi:10.1021/cm802704c

    Article  CAS  Google Scholar 

  85. Ma J, Cheng X, Ma X, Deng S, Hu A (2010) Functionalization of multiwalled carbon nanotubes with polyesters via bergman cyclization and ‘Grafting from’ strategy. J Polym Sci Polym Chem 48(23):5541–5548. doi:10.1002/pola.24365

    Article  CAS  Google Scholar 

  86. Lee R-S, Chen W-H, Lin J-H (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188. doi:10.1016/j.polymer.2011.03.020

    Article  CAS  Google Scholar 

  87. Chen J, Dyer MJ, Yu MF (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123(25):6201–6202. doi:10.1021/ja015766t

    Article  CAS  Google Scholar 

  88. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 109(11):5528–5578. doi:10.1021/cr900049t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durairaj Baskaran .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

2VP:

2-Vinylpyridine

AFM:

Atomic force microscopy

AMA:

Allyl methacrylate

APA:

3-Azidopropan-1-amine

ATRP:

Atom transfer radical polymerization

BCB-EO:

4-Hydroxyethyl benzocyclobutene

BCB-PE:

1-Benzocylcobutene-1′-phenylethylene

BD:

Butadiene

BIBA:

2-Bromoisobutyric acid

BMBP:

4′-Bromo-4-mercaptobiphenyl

BuLi:

sec-Butyl lithium

BuOLi:

Lithium tert-butoxide

CMS:

Chloromethylstyrene

CNTs:

Carbon nanotubes

CoMoCAT:

Co-Mo catalyst

CPC:

Conductive polymer composite

CP-TES:

(3-Chloropropyl)triethoxysilane

CpTiCl3 :

Cyclopentadienyltitanium(IV) trichloride

d:

Density

DAH:

1,6-Diaminohexane

DCB:

Dichlorobenzene

DEPA:

N,N-diethylphenylacetamide

DMAEMA:

2-(Dimethylamino)ethylmethacrylate

DMF:

Dimethoxyethylene

DPE:

1,1′-Diphenylethylene

DSC:

Differential scanning calorimetry

ɛ-Boc- l -Lys-NCA:

ɛ-(Benzyloxycarbonyl)- l -lysine N-carboxyanhydride

ɛ-CL:

ɛ-Caprolactam

EDA:

Ethylene diamine

EG:

Ethylene glycol

EO:

Ethylene oxide

FT:

Film thicknesses

FTIR:

Fourier transform infrared

GNRs:

Graphene nanoribbons

GO:

Graphene oxide

HEMA:

Hydroxyethyl methacrylate

HPG:

Hyperbranched polyglycerol

I:

Isoprene

l -LA:

l -Lactide

MA:

Maleic anhydride

MDI:

4,4′-Methylenebis(phenyl isocyanate)

MeOH:

Methanol

MeOK:

Potassium methoxide

MeONa:

Sodium methoxide

MMA:

Methyl methacrylate

MWD:

Molecular weight distribution

MWNT:

Multiwalled carbon nanotubes

NaCL:

ε-Caprolactam sodium salt

NCA:

N-carboxyanhydride

NMR:

Nuclear magnetic resonance

NMR:

Nuclear magnetic resonance

NMRP:

Nitroxide-mediated radical polymerization

PA6:

Polyamide 6

PBLG:

Poly(γ-benzyl- l -glutamate)

PCL:

Poly(ɛ-caprolactam)

PEO:

Poly(ethylene oxide)

PI:

Polyisoprene

PLLA:

Poly( l -lactide)

PMMA:

Poly(methyl methacrylate)

PPDX:

Poly(p-dioxanone)

PS:

Polystyrene

PVP:

Poly(2-vinyl pyridine)

RAFT:

Reversible addition fragmentation chain transfer polymerization

ROP:

Ring-opening polymerization

RT:

Room temperature

S:

Styrene

SAM:

Self-assembled monolayer

SEC:

Size exclusion chromatography

SIAP:

Surface-initiated anionic polymerization

SIP:

Surface-initiated polymerization

SmI2 :

Samarium(II) iodide

Sn(Oct)2 :

Tin(II) 2-ethylhexanoate

SWNT:

Single-walled carbon nanotubes

t-BA:

tert-Butyl acrylate

TEM:

Transmission electron microscopy

TGA:

Thermal gravimetric analysis

THF:

Tetrahydrofuran

TMEDA:

Tetramethylethylenediamine

XPS:

X-ray photoelectron spectroscopy

α-CDs:

α-Cyclodextrins

γ-BLG-NCA:

γ-Benzyl- l -glutamate N-carboxyanhydride

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Li, Z., Baskaran, D. (2015). Surface-Initiated Anionic Polymerization from Nanomaterials. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_11

Download citation

Publish with us

Policies and ethics