Fluctuations in Inflation

  • Maresuke Shiraishi
Part of the Springer Theses book series (Springer Theses)


Inflation expresses an exponential growth of the scale factor of the Universe in the early time, namely, \(a \sim e^{Ht}\). In Einstein gravity, this requires \(p \sim -\rho \) with \(p\) and \(\rho \) being the pressure and energy density, and is often realized by the existence of a scalar field, inflaton.


Scalar Field Gravitational Wave Einstein Gravity Consistency Relation Anisotropic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Baumann, arXiv:0907.5424 (2009).Google Scholar
  2. 2.
    E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011). doi: 10.1088/0067-0049/192/2/18 ADSCrossRefGoogle Scholar
  3. 3.
    L. Motta, R.R. Caldwell, Phys. Rev. D85, 103532 (2012). doi: 10.1103/PhysRevD.85.103532 ADSGoogle Scholar
  4. 4.
    J.M. Maldacena, JHEP 05, 013 (2003). doi: 10.1088/1126-6708/2003/05/013 ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Lyth, A.R. Liddle, in The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure; Revision Version (Cambridge University Press, Cambridge, 2009)Google Scholar
  6. 6.
    M. Giovannini, K.E. Kunze, Phys. Rev. D77, 123001 (2008). doi: 10.1103/PhysRevD.77.123001 ADSGoogle Scholar
  7. 7.
    J.R. Shaw, A. Lewis, Phys. Rev. D81, 043517 (2010). doi: 10.1103/PhysRevD.81.043517 ADSGoogle Scholar
  8. 8.
    A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000). doi: 10.1086/309179 ADSCrossRefGoogle Scholar
  9. 9.
    A. Lewis, Phys. Rev. D70, 043011 (2004). doi: 10.1103/PhysRevD.70.043011 ADSGoogle Scholar
  10. 10.
    D.H. Lyth, Phys. Rev. Lett. 78, 1861 (1997). doi: 10.1103/PhysRevLett.78.1861 ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsNagoya UniversityNagoyaJapan

Personalised recommendations