Advertisement

Nonequilibrium Equalities with Feedback Control

  • Takahiro Sagawa
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we consider the stochastic aspects of thermodynamics of feedback control, by taking into account the fluctuations of thermodynamic quantities and information contents. In particular, we generalize the nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equalities to feedback-controlled classical stochastic systems [1, 2], which is the third main part of this thesis. This topic is related to the paradox of Maxwell’s demon [3, 4, 5, 6, 7], and has been a topic of active researches in terms of modern nonequilibrium statistical mechanics [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In Sect. 9.1, we formulate measurements on nonequilibrium systems. In Sect. 9.2, we formulate the effect of feedback control. In Sect. 9.3, we derive the main results in this chapter, which are the generalized nonequilibrium equalities. In Sect. 9.4, we discuss two typical examples that illustrate our general results.

Keywords

Mutual Information Feedback Control Entropy Production Leibler Divergence Fluctuation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  4. 4.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, New Jersey, 2003)Google Scholar
  5. 5.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    O.J.E. Maroney, in Information Processing and Thermodynamic Entropy, ed. by E.N. Zalta. The Stanford Encyclopedia of Philosophy (Fall 2009 Edition).Google Scholar
  7. 7.
    T. Sagawa, M. Ueda, Information Thermodynamics: Maxwell’s Demon in Nonequilibrium Dynamics, arXiv:1111.5769 (2011); to appear in: R. Klages, W. Just, C. Jarzynski (eds.), Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley-VCH, Weinheim, 2012).Google Scholar
  8. 8.
    C.M. Caves, Phys. Rev. Lett. 64, 2111 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    H. Touchette, S. Lloyd, Phys. Rev. Lett. 84, 1156 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    H. Touchette, S. Lloyd, Phys. A 331, 140 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    F.J. Cao, L. Dinis, J.M.R. Parrondo, Phys. Rev. Lett. 93, 040603 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K.H. Kim, H. Qian, Phys. Rev. Lett. 93, 120602 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    K.H. Kim, H. Qian, Phys. Rev. E 75, 022102 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    B.J. Lopez, N.J. Kuwada, E.M. Craig, B.R. Long, H. Linke, Phys. Rev. Lett. 101, 220601 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    F.J. Cao, M. Feito, Phys. Rev. E 79, 041118 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Feito, J.P. Baltanas, F.J. Cao, Phys. Rev. E 80, 031128 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    F.J. Cao, M. Feito, H. Touchette, Phys. A 388, 113 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Ponmurugan, Phys. Rev. E 82, 031129 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Fujitani, H. Suzuki, J. Phys. Soc. Jpn. 79, 104003 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    S. Ito, M. Sano, Phys. Rev. E 84, 021123 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Horowitz, J.M.R. Parrondo, Europhys. Lett. 95, 10005 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    D. Abreu, U. Seifert, Europhys. Lett. 94, 10001 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Vaikuntanathan, C. Jarzynski, Phys. Rev. E 83, 061120 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    T. Sagawa, J. Phys. Conf. Ser. 297, 012015 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    D.V. Averin, M. Möttönen, J.P. Pekola, Phys. Rev. B 84, 245448 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 13, 123019 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Lahiri, S. Rana, A.M. Jayannavar, J. Phys. A Math. Theor. 45, 065002 (2012)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    D. Abreu, U. Seifert, Phys. Rev. Lett. 108, 030601 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    J.C. Doyle, B.A. Francis, A.R. Tannenbaum, Feedback Control Theory (Macmillan, New York, 1992)Google Scholar
  34. 34.
    K.J. Åstrom, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers ( Princeton University Press, Princeton, 2008).Google Scholar
  35. 35.
    G. Welch, G. Bishop, An introduction to the Kalman filter, Technical Report TR 95–041 (University of North Carolina, Department of Computer Science, 1995)Google Scholar
  36. 36.
    D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, Belmont, 2005)MATHGoogle Scholar
  37. 37.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    R.D. Vale, F. Oosawa, Adv. Biophys. 26, 97 (1990)CrossRefGoogle Scholar
  41. 41.
    F. Julicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    J.M.R. Parrondo, B.J. De Cisneros, Appl. Phys. A 75, 179 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    P. Reimann, Phys. Rept. 361, 57 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  44. 44.
    P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. 14, 51 (2005)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations