Advertisement

Second Law with Feedback Control

  • Takahiro Sagawa
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we derive a generalized second law with a quantum measurement and quantum feedback control [1, 2], which is the first main part of this thesis. Thermodynamics of feedback control has been studied for a long time in terms of Maxwell’s demon [3, 4, 5, 6, 7]. In fact, the demon can be formulated as a feedback controller acting on thermodynamic systems. Recently, this topic has attracted numerous attentions based on the advancements in nonequilibrium statistical mechanics and quantum information theory [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In Sect. 6.1, we derive the lower bound of the entropy difference by feedback control. Based on it, in Sect. 6.2, we derive a generalized second law of thermodynamics with feedback control. In Sect. 6.3, we discuss a generalized Szilard engine [22] that achieves the upper bound of the generalized second law.

Keywords

Feedback Control Density Operator Heat Bath Unitary Evolution Thermodynamic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    T. Sagawa, Prog. Theor. Phys. 127, 1 (2012)ADSMATHCrossRefGoogle Scholar
  3. 3.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  4. 4.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, Princeton, 2003)Google Scholar
  5. 5.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    O.J.E. Maroney, Information processing and thermodynamic entropy, in The Stanford Encyclopedia of Philosophy, Fall 2009 edn., ed. by E.N. Zalta (Fall, Chicago, 2009).Google Scholar
  7. 7.
    T. Sagawa, M Ueda, Information thermodynamics: maxwell’s demon in nonequilibrium dynamics, in: Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. R. Klages, W. Just, C. and Jarzynski (Eds.),(Wiley, Weinheim, 2012) e-print : arXiv:1111.5769 (2011)(to appear).Google Scholar
  8. 8.
    S. Lloyd, Phys. Rev. A 39, 5378 (1989)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S. Lloyd, Phys. Rev. A 56, 3374 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. London A 454, 277 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    W.H. Zurek, arXiv:quant-ph/0301076 (2003).Google Scholar
  12. 12.
    T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A.E. Allahverdyan, R. Balian, ThM Nieuwenhuizen, J. Mod. Opt. 51, 2703 (2004)ADSMATHCrossRefGoogle Scholar
  14. 14.
    H.T. Quan, Y.D. Wang, Y-x. Liu, C. P. Sun, F. Nori. Phys. Rev. Lett. 97, 180402 (2006)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    K. Jacobs, Phys. Rev. A 80, 012322 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    H. Dong, D.Z. Xu, C.Y. Cai, C.P. Sun, Phys. Rev. E 83, 061108 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D.V. Averin, M. Möttönen, J.P. Pekola, Phys. Rev. B 84, 245448 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. Lahiri, S. Rana, A.M. Jayannavar, J. Phys. A: Math. Theor. 45, 065002 (2012)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Y. Lu, G.L. Long, Phys. Rev. E 85, 011125 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)MATHGoogle Scholar
  24. 24.
    L. Szilard, Z. Phys. 53, 840 (1929)ADSMATHCrossRefGoogle Scholar
  25. 25.
    D. Abreu, U. Seifert, Europhys. Lett. 94, 10001 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 13, 123019 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H.J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971)CrossRefGoogle Scholar
  28. 28.
    M. Ozawa, J. Math. Phys. 27, 759 (1986)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    F. Buscemi, M. Hayashi, M. Horodecki, Phys. Rev. Lett. 100, 210504 (2008)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations