Advertisement

Review of Maxwell’s Demon

  • Takahiro Sagawa
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The paradox of Maxwell’s demon was proposed in a letter from James C. Maxwell to Peter G. Tait for the first time. In the letter, Maxwell mentioned his gedankenexperiment of “a being whose faculties are so sharpened that he can follow every molecule” [1]. The being may be like a tiny fairy, and may violate the second law of thermodynamics. In 1874, William Thomson, who is also well-known as Lord Kelvin, gave it an impressive but opprobrious name—“demon.” Later, Leo Szilard proposed an important model of the demon, which quantitatively connects the thermodynamic work to information [2]. Since then, numerous researchers have been discussed the foundation of the second law of thermodynamics in terms of Maxwell’s demon [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In this chapter, we review the historical arguments and the basic ideas related to the problem of the demon. The modern aspects of the demon [5, 6, 17, 18, 19, 20, 21, 22, 23, 24, 25] will be discussed in the following chapters.

Keywords

Positive Work Isothermal Process Excess Work Probe Photon Perpetual Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  2. 2.
    L. Szilard, Z. Phys. 53, 840 (1929)ADSMATHCrossRefGoogle Scholar
  3. 3.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, New Jersey, 2003)Google Scholar
  4. 4.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    O.J.E. Maroney, Information processing and thermodynamic entropy, in The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Fall 2009 Edition).Google Scholar
  6. 6.
    T. Sagawa, M. Ueda, Information thermodynamics: Maxwell’s demon in nonequilibrium dynamics, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, ed. by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2012), arXiv:1111.5769 (2011) (To appear).Google Scholar
  7. 7.
    L. Brillouin, J. Appl. Phys. 22, 334 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982)CrossRefGoogle Scholar
  10. 10.
    W.H. Zurek, Nature 341, 119 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    W.H. Zurek, Phys. Rev. A 40, 4731 (1989)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    K. Shizume, Phys. Rev. E 52, 3495 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    R. Landauer, Science 272, 1914 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    H. Matsueda, E. Goto, K-F. Loe, RIMS Kôkyûroku 1013, 187 (1997)Google Scholar
  15. 15.
    B. Piechocinska, Phys. Rev. A 61, 062314 (2000)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    C.H. Bennett, Stud. Hist. Philos. Mod. Phys. 34, 501 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 64, 0561171 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Horhammer, H. Buttner, J. Stat. Phys. 133, 1161 (2008)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M.M. Barkeshli, arXiv:cond-mat/0504323 (2005).Google Scholar
  20. 20.
    J.D. Norton, Stud. Hist. Philos. Mod. Phys. 36, 375 (2005)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    O.J.E. Maroney, Phys. Rev. E 79, 031105 (2009)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    S. Turgut, Phys. Rev. E 79, 041102 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 106, 189901(E) (2011).Google Scholar
  25. 25.
    T. Sagawa, Prog. Theor. Phys. 127, 1 (2012)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations