Advertisement

Introduction

  • Takahiro Sagawa
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this thesis, we construct a general theory of thermodynamics of information processing. The background of this research is the recently developed field of nonequilibrium statistical mechanics and quantum and classical information theories. These theories are closely related to the modern technologies used to manipulate and observe small systems; for example, macromolecules and colloidal particles in the classical regime, and quantum-optical systems and quantum dots in the quantum regime. First, we generalize the second law of thermodynamics to the situations in which small thermodynamic systems are subject to quantum feedback control. Second, we generalize the second law of thermodynamics to the measurement and information erasure processes used in the demon’s memory. Third, we generalize the nonequilibrium equalities such as the fluctuation theorem and the Jarzynski equality to classical stochastic dynamics in the presence of feedback control. In these results, thermodynamic quantities and information contents are treated on an equal footing. Moreover, the obtained inequalities and equalities are model-independent, so that they can be applied to a broad range of information processing applications. Our findings could be called the second law of “information thermodynamics”.

Keywords

Thermodynamic System Quantum Information Theory Quantum Regime Classical Regime Nonequilibrium Statistical Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.C. Maxwell, Theory of Heat (Appleton, London, 1871)Google Scholar
  2. 2.
    H.S. Leff, A.F. Rex (eds.), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Princeton University Press, New Jersey, 2003)Google Scholar
  3. 3.
    K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    O.J.E. Maroney, Information processing and thermodynamic entropy, in The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Fall 2009 Edition).Google Scholar
  5. 5.
    T. Sagawa, M. Ueda, Information thermodynamics: Maxwell’s demon in nonequilibrium dynamics, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, ed. by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2012), arXiv:1111.5769 (2011) (To appear).Google Scholar
  6. 6.
    S. Carnot, Réflexions sur la pussance motrice du feu et sur les machines propresà développer atte puissance (Bachelier, Paris, 1824)Google Scholar
  7. 7.
    L. Tisza, P.M. Quay, Ann. Phys. 25, 48 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    E.H. Lieb, J. Yngvason, Phys. Rept. 310, 1 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (Wiley, New York, 1985)MATHGoogle Scholar
  10. 10.
    H. Tasaki, Thermodynanmics–From a Modern Point of View (Baifu-kan, Chiyoda, 2000). (in Japanese)Google Scholar
  11. 11.
    S. Sasa, Introduction to Thermodynamics (Kyoritsu, Tokyo, 2000). (in Japanese)Google Scholar
  12. 12.
    A. Shimizu, Principles of Thermodynamics (University of Tokyo Press, Tokyo, 2007). (in Japanese)Google Scholar
  13. 13.
    L. Szilard, Z. Phys. 53, 840 (1929)ADSMATHCrossRefGoogle Scholar
  14. 14.
    C. Shannon, Bell Syst. Tech. J. 27(371–423), 623–656 (1948)MathSciNetGoogle Scholar
  15. 15.
    L. Brillouin, J. Appl. Phys. 22, 334 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982)CrossRefGoogle Scholar
  17. 17.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    W.H. Zurek, Nature 341, 119 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    W.H. Zurek, Phys. Rev. A 40, 4731 (1989)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    K. Shizume, Phys. Rev. E 52, 3495 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    R. Landauer, Science 272, 1914 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    H. Matsueda, E. Goto, K-F. Loe, RIMS Kôkyûroku 1013, 187 (1997)Google Scholar
  23. 23.
    B. Piechocinska, Phys. Rev. A 61, 062314 (2000)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    C.H. Bennett, Stud. Hist. Philos. Mod. Phys. 34, 501 (2003)MATHCrossRefGoogle Scholar
  25. 25.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 64, 0561171 (2001)CrossRefGoogle Scholar
  26. 26.
    C. Horhammer, H. Buttner, J. Stat. Phys. 133, 1161 (2008)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    M.M. Barkeshli, arXiv:cond-mat/0504323 (2005).Google Scholar
  28. 28.
    J.D. Norton, Stud. Hist. Philos. Mod. Phys. 36, 375 (2005)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    O.J.E. Maroney, Phys. Rev. E 79, 031105 (2009)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    S. Turgut, Phys. Rev. E 79, 041102 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 106, 189901(E) (2011).Google Scholar
  33. 33.
    T. Sagawa, Prog. Theor. Phys. 127, 1 (2012)ADSMATHCrossRefGoogle Scholar
  34. 34.
    M. Schliwa, G. Woehlke, Nature 422, 751–765 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Shirai et al., Nano Lett. 5, 2330 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    V. Serreli et al., Nature 445, 523 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    S. Rahav, J. Horowitz, C. Jarzynski, Phys. Rev. Lett. 101, 140602 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. 46, 72 (2007)CrossRefGoogle Scholar
  39. 39.
    H. Gu et al., Nature 465, 202 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)CrossRefGoogle Scholar
  42. 42.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008)ADSMATHCrossRefGoogle Scholar
  43. 43.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)ADSMATHCrossRefGoogle Scholar
  44. 44.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  47. 47.
    G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    C. Maes, J. Stat. Phys. 95, 367 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    C. Jarzynski, J. Stat. Phys. 98, 77 (2000)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    J. von Neumann, Mathematische Grundlagen der Quantumechanik (Springer, Berlin, 1932). [Eng. trans. R.T. Beyer, Mathematical Foundations of Quantum Mechanics (Prinston University Press, Princeton, 1955)]Google Scholar
  52. 52.
    E.B. Davies, J.T. Lewis, Commun. Math. Phys. 17, 239 (1970)MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    K. Kraus, Ann. Phys. 64, 311 (1971)MathSciNetADSMATHCrossRefGoogle Scholar
  54. 54.
    M. Ozawa, J. Math. Phys. 25, 79 (1984)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)MATHGoogle Scholar
  56. 56.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)MATHGoogle Scholar
  57. 57.
    K. Koshino, A. Shimizu, Phys. Rept. 412, 191 (2005)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010)MATHGoogle Scholar
  59. 59.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)MATHCrossRefGoogle Scholar
  60. 60.
    S. Lloyd, Phys. Rev. A 39, 5378 (1989)MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    C.M. Caves, Phys. Rev. Lett. 64, 2111 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  62. 62.
    S. Lloyd, Phys. Rev. A 56, 3374 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. Lond. A 454, 277 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    H. Touchette, S. Lloyd, Phys. Rev. Lett. 84, 1156 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    W.H. Zurek, arXiv:quant-ph/0301076 (2003).Google Scholar
  66. 66.
    T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    A.E. Allahverdyan, R. Balian, ThM Nieuwenhuizen, J. Mod. Opt. 51, 2703 (2004)ADSMATHCrossRefGoogle Scholar
  68. 68.
    H. Touchette, S. Lloyd, Phys. A 331, 140 (2004)MathSciNetCrossRefGoogle Scholar
  69. 69.
    H.T. Quan, Y.D. Wang, Y-x. Liu, C. P. Sun, F. Nori. Phys. Rev. Lett. 97, 180402 (2006)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    F.J. Cao, L. Dinis, J.M.R. Parrondo, Phys. Rev. Lett. 93, 040603 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    K.H. Kim, H. Qian, Phys. Rev. Lett. 93, 120602 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    K.H. Kim, H. Qian, Phys. Rev. E 75, 022102 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    B.J. Lopez, N.J. Kuwada, E.M. Craig, B.R. Long, H. Linke, Phys. Rev. Lett. 101, 220601 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    A.E. Allahverdyan, D.B. Saakian, Europhys. Lett. 81, 30003 (2008)MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    K. Jacobs, Phys. Rev. A 80, 012322 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    F.J. Cao, M. Feito, Phys. Rev. E 79, 041118 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    M. Feito, J.P. Baltanas, F.J. Cao, Phys. Rev. E 80, 031128 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    F.J. Cao, M. Feito, H. Touchette, Phys. A 388, 113 (2009)CrossRefGoogle Scholar
  80. 80.
    T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    M. Ponmurugan, Phys. Rev. E 82, 031129 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    Y. Fujitani, H. Suzuki, J. Phys. Soc. Jpn. 79, 104003 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    J.M. Horowitz, S. Vaikuntanathan, Phys. Rev. E 82, 061120 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)CrossRefGoogle Scholar
  85. 85.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    Y. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  87. 87.
    S. Ito, M. Sano, Phys. Rev. E 84, 021123 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    J.M. Horowitz, J.M.R. Parrondo, Europhys. Lett. 95, 10005 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    D. Abreu, U. Seifert, Europhys. Lett. 94, 10001 (2011)ADSCrossRefGoogle Scholar
  90. 90.
    S. Vaikuntanathan, C. Jarzynski, Phys. Rev. E 83, 061120 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    T. Sagawa, J. Phys. Conf. Ser. 297, 012015 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    H. Dong, D.Z. Xu, C.Y. Cai, C.P. Sun, Phys. Rev. E 83, 061108 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    D.V. Averin, M. Möttönen, J.P. Pekola, Phys. Rev. B 84, 245448 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 13, 123019 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    L. Granger, H. Kantz, Phys. Rev. E 84, 061110 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    S. Lahiri, S. Rana, A.M. Jayannavar, J. Phys. A: Math. Theor. 45, 065002 (2012)MathSciNetADSCrossRefGoogle Scholar
  97. 97.
    Y. Lu, G.L. Long, Phys. Rev. E 85, 011125 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    T. Sagawa, M. Ueda, Phys. Rev. E 85, 021104 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    J.C. Doyle, B.A. Francis, A.R. Tannenbaum, Feedback Control Theory (Macmillan, New York, 1992)Google Scholar
  100. 100.
    K.J. Åstrom, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers (Princeton University Press, Princeton, 2008)Google Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations