Three-fold Way at High Density

  • Takuya Kanazawa
Part of the Springer Theses book series (Springer Theses, volume 124)


The analysis of the Dirac spectrum in the last chapter for dense two-color QCD (corresponding to Dyson index \({\ss }=1\)) is extended to QCD with complex quarks at large isospin density (\({\ss }=2\)) and QCD with real quarks at large quark density (\(\beta =4\)), with “complex” and “real” referring to the representation of quarks under the gauge transformation. Namely two non-Hermitian chiral random matrix theories (ChRMT) are successfully identified that reduce, in the large-N limit, to those dense QCD-like theories with \({\ss }=2\) and 4 in the \(\varepsilon \)-regime. This establishes the generalization of the "three-fold way" (\({\ss }=1, 2, 4\)) of ChRMT a la Verbaarschot in the QCD vacuum to the BCS superfluid phase of dense QCD. The microscopic spectral density of random matrix eigenvalues in the new ChRMT is precisely determined, and its properties in comparison with two-color QCD are discussed.


Partition Function Chiral Limit Symmetry Breaking Pattern Nonzero Chemical Potential Isospin Chemical Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Akemann, Matrix models and QCD with chemical potential. Int. J. Mod. Phys. A22, 1077–1122 (2007)MathSciNetADSGoogle Scholar
  2. 2.
    P. de Forcrand, Simulating QCD at finite density. PoS LAT2009, 010 (2009)Google Scholar
  3. 3.
    M.G. Alford, A. Kapustin, F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice. Phys. Rev. D59, 054502 (1999)ADSGoogle Scholar
  4. 4.
    P. de Forcrand, M.A. Stephanov, U. Wenger, On the phase diagram of QCD at finite isospin density. PoS LAT2007, 237 (2007)Google Scholar
  5. 5.
    D.T. Son, M.A. Stephanov, QCD at finite isospin density. Phys. Rev. Lett. 86, 592–595 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    D.T. Son, M.A. Stephanov, QCD at finite isospin density: from pion to quark antiquark condensation. Phys. Atom. Nucl. 64, 834–842 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    K. Splittorff, D.T. Son, M.A. Stephanov, QCD-like theories at finite baryon and isospin density. Phys. Rev. D64, 016003 (2001)Google Scholar
  8. 8.
    D. Toublan, J.B. Kogut, Isospin chemical potential and the QCD phase diagram at nonzero temperature and baryon chemical potential. Phys. Lett. B564, 212–216 (2003)ADSGoogle Scholar
  9. 9.
    M.A. Metlitski, A.R. Zhitnitsky, Theta-dependence of QCD at finite isospin density. Phys. Lett. B633, 721–728 (2006)ADSGoogle Scholar
  10. 10.
    J.M. Moller, On the phase diagram of QCD with small isospin chemical potential. Phys. Lett. B683, 235–239 (2010)ADSGoogle Scholar
  11. 11.
    T. Schäfer, Patterns of symmetry breaking in QCD at high baryon density. Nucl. Phys. B575, 269–284 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hanada, N. Yamamoto, Universality of phases in QCD and QCD-like theories. JHEP 02, 138 (2012)Google Scholar
  13. 13.
    M.G. Alford, K. Rajagopal, F. Wilczek, Color-flavor locking and chiral symmetry breaking in high density QCD. Nucl. Phys. B537, 443–458 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    R. Rapp, T. Schafer, E.V. Shuryak, M. Velkovsky, High-density QCD and instantons. Ann. Phys. 280, 35–99 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    D. Weingarten, Mass Inequalities for QCD. Phys. Rev. Lett. 51, 1830 (1983)Google Scholar
  16. 16.
    E. Witten, Some inequalities among hadron masses. Phys. Rev. Lett. 51, 2351 (1983)Google Scholar
  17. 17.
    R. Casalbuoni, G. Nardulli, Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 76, 263–320 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Bedaque, T. Schafer, High density quark matter under stress. Nucl. Phys. A697, 802–822 (2002)ADSGoogle Scholar
  19. 19.
    D.K. Hong, An effective field theory of QCD at high density. Phys. Lett. B473, 118–125 (2000)ADSGoogle Scholar
  20. 20.
    D.K. Hong, Aspects of high density effective theory in QCD. Nucl. Phys. B582, 451–476 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    T. Schafer, Mass terms in effective theories of high density quark matter. Phys. Rev. D65, 074006 (2002)Google Scholar
  22. 22.
    T. Kanazawa, T. Wettig, N. Yamamoto, Singular values of the dirac operator in dense QCD-like theories. JHEP 12, 007 (2011)Google Scholar
  23. 23.
    J.C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93, 222001 (2004)Google Scholar
  24. 24.
    M. Kieburg, T. Guhr, Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A43, 075201 (2010)Google Scholar
  25. 25.
    G. Akemann, M.J. Phillips, L. Shifrin, Gap Probabilities in non-hermitian random matrix theory. J. Math. Phys. 50, 063504 (2009)Google Scholar
  26. 26.
    H. Leutwyler, A.V. Smilga, Spectrum of dirac operator and role of winding number in QCD. Phys. Rev. D46, 5607–5632 (1992)MathSciNetADSGoogle Scholar
  27. 27.
    A.V. Smilga, J.J.M. Verbaarschot, Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fermions. Phys. Rev. D51, 829–837 (1995)MathSciNetADSGoogle Scholar
  28. 28.
    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot, A. Zhitnitsky, QCD-like theories at finite baryon density. Nucl. Phys. B582, 477–513 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    S. Hands et al., Numerical study of dense adjoint matter in two color QCD. Eur. Phys. J. C17, 285–302 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    T. Zhang, T. Brauner, D.H. Rischke, QCD-like theories at nonzero temperature and density. JHEP 06, 064 (2010)Google Scholar
  31. 31.
    A. Cherman, M. Hanada, D. Robles-Llana, Orbifold equivalence and the sign problem at finite baryon density. Phys. Rev. Lett. 106, 091603 (2011)Google Scholar
  32. 32.
    A. Cherman, B.C. Tiburzi, Orbifold equivalence for finite density QCD and effective field theory. JHEP 06, 034 (2011)Google Scholar
  33. 33.
    M.L. Mehta, Random Matrices, 3rd edn (Academic Press, Amsterdam, 2004)Google Scholar
  34. 34.
    A.M. Halasz, J.J.M. Verbaarschot, Effective lagrangians and chiral random matrix theory. Phys. Rev. D52, 2563–2573 (1995)ADSGoogle Scholar
  35. 35.
    G. Akemann, The complex Laguerre symplectic ensemble of non-hermitian matrices. Nucl. Phys. B730, 253–299 (2005)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G. Akemann, F. Basile, Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry. Nucl. Phys. B766, 150–177 (2007)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations