Skip to main content

Review on North Pacific Subtropical Countercurrents and Subtropical Fronts: role of mode waters in ocean circulation and climate

  • Special Section: Review
  • Chapter
  • First Online:

Abstract

A Subtropical Countercurrent (STCC) is a narrow eastward jet on the equator side of a subtropical gyre, flowing against the broad westward Sverdrup flow. Together with theories, recent enhanced observations and model simulations have revealed the importance of mode waters in the formation and variability of North Pacific STCCs. There are three distinct STCCs in the North Pacific, maintained by low potential vorticity (PV) that mode waters carry from the north. Model simulations show that changes in mode water ventilation result in interannual to interdecadal variations and long-term changes of STCCs. STCCs affect the atmosphere through their surface thermal effects, inducing anomalous cyclonic wind curl and precipitation along them. Thus, mode waters are not merely passive water masses but have dynamical and climatic effects. For temporal variability, atmospheric forcings are also suggested to be important in addition to the variability of mode waters. STCCs exist in other oceans and they are also flanked by mode waters on their poleward sides, suggesting that they are maintained by similar dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander MA, Deser C, Timlin MS (1999) The reemergence of SST anomalies in the North Pacific Ocean. J Clim 12:2419-2433

    Google Scholar 

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010)World Ocean Atlas 2009. Salinity, vol 2. In: Levitus S (ed) NOAA Atlas NESDIS 69. US Government Printing Office, Washington, DC

    Google Scholar 

  • Aoki S, Imawaki S (1996) Eddy activities of the surface layer in the western North Pacific detected by satellite altimeter and radiometer. J Oceanogr 52:457-474

    Google Scholar 

  • Aoki Y, Suga T, Hanawa K (2002) Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J Phys Oceanogr 32:2299-2311

    Google Scholar 

  • Bingham FM (1992) Formation and spreading of subtropical mode water in the North Pacific. J Geophys Res 97:11177-11189

    Google Scholar 

  • Chu PC, Li R, You X (2002) Northwest Pacific subtropical countercurrent on isopycnal surface in summer. Geophys Res Lett 29:1842. doi:10.1029/2002GL014831

    Google Scholar 

  • Conkright ME, Antonov JI, Baranova O, Boyer TP, Garacia HE, Gelfeld R, Johnson D, Locarnin RA, Murphy PP, O’Brien TD, Smolyar I, Stephens C (2002) World Ocean Database 2001. Introduction, vol 1. In: Levitus S (ed) NOAA Atlas, NESDIS 42. US Government Printing Office, Washington, DC

    Google Scholar 

  • Cummins PF, Mysak LA, Hamilton K (1986) Generation of annual Rossby waves in the North Pacific by the wind stress curl. J Phys Oceanogr 16:1179-1189

    Google Scholar 

  • Cushman-Roisin B (1984) On the maintenance of the subtropical front and its associated countercurrent. J Phys Oceanogr 14:1179-1190

    Google Scholar 

  • Dewar WK (1987) Planetary shock waves. J Phys Oceanogr 17:470-482

    Google Scholar 

  • Dewar WK (1991) Arrested fronts. J Mar Res 49:21-52

    Google Scholar 

  • Dewer WK (1992) Spontaneous shocks. J Phys Oceanogr 22:505-522

    Google Scholar 

  • Dinniman MS, Rienecker MM (1999) Frontogenesis in the North Pacific oceanic frontal zones: a numerical simulation. J Phys Oceanogr 29:537-559

    Google Scholar 

  • Endoh T, Jia Y, Richards KJ (2006) Sensitivity of the ventilation process in the North Pacific to eddy-induced tracer transport. J Phys Oceanogr 36:1895-1911

    Google Scholar 

  • Gordon AL, Lutjeharms JRE, Grundlingh ML (1987) Stratification and circulation at the Agulhas retroflection. Deep Sea Res 34:565-599

    Google Scholar 

  • Halliwell GR Jr, Peng G, Olson DB (1994) Stability of the Sargasso Sea subtropical frontal zone. J Phys Oceanogr 24:1166-1183Hanawa K, Kamada J (2001) Variability of core layer temperature (CLT) of North Pacific subtropical mode water. Geophys Res Lett 28:2229-2232

    Google Scholar 

  • Hanawa K, Sugimoto S (2004) ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett 31:L10303. doi:10.1029/2004GL019904

    Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J (eds) Ocean circulation and climate. International geophysics series. Academic, San Diego, pp 373-386

    Google Scholar 

  • Hanawa K, Yoritaka H (2001) North Pacific subtropical mode water observed in long cross section along 32.5 N line. J Oceanogr 57:679-692

    Google Scholar 

  • Haney RL (1971) Surface thermal boundary condition for ocean circulation models. J Phys Oceanogr 1:241-248

    Google Scholar 

  • Hasunuma K, Yoshida K (1978) Splitting the subtropical gyre in the western North Pacific. J Oceanogr Soc Japan 34:160-172

    Google Scholar 

  • Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific basin. J Geophys Res 106:19671-19681

    Google Scholar 

  • Hosoda S, Xie S-P, Takeuchi K, Nonaka M (2004) Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J Oceanogr 60:865-877

    Google Scholar 

  • Hwang C, Wu C-R, Kao R (2004) TOPEX/Poseidon observations of mesoscale eddies over the subtropical countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J Geophys Res 109:C08013. doi:10.1029/2003JC002026

    Google Scholar 

  • Ichikawa K, Gohda N, Arai M, Kaneko A (2004) Monitoring surface velocity from repeated ADCP observations and satellite altimetry. J Oceanogr 60:365-374

    Google Scholar 

  • Kaneko I, Takatsuki Y, Kamiya H, Kawae S (1998) Water property and current distributions along the WHP-P9 section (137 -142 E) in the western North Pacific. J Geophys Res 103:12959-12984

    Google Scholar 

  • Kato K, Kodama Y (1992) Formation of the quasi-stationary Baiu front to the south of the Japan Islands in early May of 1979. J Meteor Soc Jpn 70:631-647

    Google Scholar 

  • Kawamura H, Sawa Y, Sakaida F (1995) Satellite observations of 3-6 months variation in the Kuroshio and the subtropical front. Umi Sora 71:9-15 (in Japanese with English abstract and legends)

    Google Scholar 

  • Kazmin AS, Rienecker MM (1996) Variability and frontogenesis in the large-scale oceanic frontal zones. J Geophys Res 101:907-921

    Google Scholar 

  • Kobashi F, Kawamura H (2001) Variation of sea surface height at periods of 65-220 days in the subtropical gyre of the North Pacific. J Geophys Res 106:26817-26831

    Google Scholar 

  • Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the Hawaiian Lee countercurrent. J Geophys Res 107:3185. doi: 10.1029/2001JC001225

    Google Scholar 

  • Kobashi F, Xie SP (2012) Interannual variability of the North Pacific subtropical countercurrent: role of local ocean-atmosphere interaction. J Oceanogr. doi:10.1007/s10872-011-0048-x

  • Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi:10.1029/2006JC003479

    Google Scholar 

  • Kobashi F, Xie S-P, Iwasaka N, Sakamoto TT (2008) Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J Clim 21:5960-5975

    Google Scholar 

  • Kubokawa A (1995) Stationary Rossby waves and shocks on the Sverdrup coordinate. J Oceanogr 51:207-224

    Google Scholar 

  • Kubokawa A (1997) A two-level model of subtropical gyre and subtropical countercurrent. J Oceanogr 53:231-244

    Google Scholar 

  • Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314-1333

    Google Scholar 

  • Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303-1313

    Google Scholar 

  • Kubokawa A, Xie S-P (2002) On steady response of a ventilated thermocline to enhanced Ekman pumping. J Oceanogr 58:565-575

    Google Scholar 

  • Ladd C, Thompson L (2001) Water mass formation in an isopycnal model of the North Pacific. J Phys Oceanogr 31:1517-1537

    Google Scholar 

  • Ladd C, Thompson L (2002) Decadal variability of North Pacific central mode water. J Phys Oceanogr 32:2870-2881

    Google Scholar 

  • Liu Z (1993) Interannual positive feedbacks in a simple extratropical air-sea coupling system. J Atmos Sci 50:3022-3028

    Google Scholar 

  • Liu Q, Wang S, Wang Q, Wang W (2003) On the formation of subtropical countercurrent to the west of the Hawaiian Islands.J Geophys Res 108:3167. doi:10.1029/2002JC001366

    Google Scholar 

  • Liu WT, Xie X, Niiler PP (2007) Ocean-atmosphere interaction over Agulhas Extension meanders. J Clim 20:5784-5797

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. Temperature, vol 1. Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington, DC

    Google Scholar 

  • Luo Y, Liu Q, Rothstein LM (2009) Simulated response of North Pacific mode waters to global warming. Geophys Res Lett 36:L23609. doi:10.1029/2009GL040906

    Google Scholar 

  • Luyten JR, Pedlosky J, Stommel H (1983) The ventilated thermo-cline. J Phys Oceanogr 13:292-309

    Google Scholar 

  • Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:436-472

    Google Scholar 

  • Me’mery L, Arhan M, Alvarez-Salgado XA, Messias M-J, Mercier H, Castro CG, Rios AF (2000) The water masses along the western boundary of the south and equatorial Atlantic. Prog Oceanogr 47:69-98

    Google Scholar 

  • Merle J, Rotschi H, Voituriez B (1969) Zonal circulation in the tropical western South Pacific at 170 E. Bull Jpn Soc Fish Oceanogr. Special Number (Prof. Uda’s Commemorative Papers), 91-98

    Google Scholar 

  • Michida Y (1997) Surface current field in the area of subtropical countercurrent observed with surface drifters. Rep Hydro Res 33:21-30 (in Japanese with English abstract)

    Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206-209

    Google Scholar 

  • Mysak LA (1983) Generation of annual Rossby waves in the North Pacific. J Phys Oceanogr 13:1908-1923

    Google Scholar 

  • Nakamura H (1996) A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: its distribution and formation. J Oceanogr 52:171-188

    Google Scholar 

  • Niller PP, Maximenko NA, McWilliams JC (2003) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30 (22):2164. doi:10.1029/2003GL018628

    Google Scholar 

  • Nishikawa S, Tsujino H, Sakamoto K, Nakano H (2010) Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific. J Phys Oceanogr 40:1748-1765

    Google Scholar 

  • Nitani H (1972) Beginning of the Kuroshio. Stommel H, Yoshida K (eds) Kuroshio—its physical aspects. University of Tokyo Press, Tokyo, pp 129-163

    Google Scholar 

  • Noh Y, Yim BY, You SH, Yoon JH, Qiu B (2007) Seasonal variation of eddy kinetic energy of the North Pacific subtropical counter-current simulated by an eddy-resolving OGCM. Geophys Res Lett 34:L07601. doi:10.1029/2006GL029130

    Google Scholar 

  • Nonaka M, Xie SP, Sasaki H (2012) Interannual variations in low potential vorticity water and the subtropical countercurrent in an eddy-resolving OGCM. J Oceanogr. doi:10.1007/s10872-011-0042-3

  • Oka E (2009) Seasonal and interannual variation of North Pacific subtropical mode water in 2003-2006. J Oceanogr 65:151-164

    Google Scholar 

  • Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr. doi:10.1007/s10872-011-0032-5

  • Oka E, Suga T (2005) Differential formation and circulation of North Pacific central mode water. J Phys Oceanogr 35:1997-2011

    Google Scholar 

  • Oka E, Suga T, Sukigara C, Toyama K, Shimada Kmode water. J Phys Oceanogr 41:666-681

    Google Scholar 

  • Olson DB, Schott FA, Zantopp RJ, Leaman KD (1984) The mean circulation east of the Bahamas as determined by a recent measurement program and historical XBT data. J Phys Oceanogr 14:1470-1487

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteor Soc Jpn 85:369-432

    Google Scholar 

  • Palastanga V, van Leeuwen PJ, Schouten MW, de Ruijter WPM (2007) Flow structure and variability in the subtropical Indian Ocean: instability of the South Indian Ocean countercurrent. J Geophys Res 112:C01001. doi:10.1029/2005JC003395

    Google Scholar 

  • Pedlosky J (1984) Cross-gyre ventilation of the subtropical gyre: an internal mode in the ventilated thermocline. J Phys Oceanogr 14:1172-1178

    Google Scholar 

  • Qiu B (1999) Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J Phys Oceanogr 29:2471-2486

    Google Scholar 

  • Qiu B, Chen S (2004) Seasonal modulations in the eddy field of the South Pacific Ocean. J Phys Oceanogr 34:1515-1527

    Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmo-spheric control. J Phys Oceanogr 36:1365-1380

    Google Scholar 

  • Qiu B, Chen S (2010) Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J Phys Oceanogr 40:213-225

    Google Scholar 

  • Qiu B, Koh DA, Lumpkin C, Flament P (1997) Existence and formation mechanism of the North Hawaiian Ridge current. J Phys Oceanogr 27:431-444

    Google Scholar 

  • Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:10.1029/2009GL040914

    Google Scholar 

  • Reed RK (1970) On subtropical currents and thermal structure in the central North Pacific. J Oceanogr Soc Japan 26:183-184

    Google Scholar 

  • Reid JL (1978) On the mid-depth circulation and salinity field in the North Atlantic Ocean. J Geophys Res 83:5063-5067

    Google Scholar 

  • Reid JL, Mantyla AW (1978) On the mid-depth circulation of the North Pacific Ocean. J Phys Oceanogr 8:946-951

    Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473-5496

    Google Scholar 

  • Rhines PB, Young WR (1982) A theory of the wind-driven circulation. Part I: mid-ocean gyres. J Mar Res 40(Suppl):559-596

    Google Scholar 

  • Richards KJ, Maximenko NA, Bryan FO, Sasaki H (2006) Zonal jets in the Pacific Ocean. Geophys Res Lett 33:L03605. doi:10.1029/2005GL024645

    Google Scholar 

  • Rio M-H, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measure- ments, and a geoid model. J Geophys Res 109:C12032. doi:10.1029/2003JC002226

    Google Scholar 

  • Rio M-H, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi:10.1029/2010JC006505

    Google Scholar 

  • Roden GI (1975) On the north Pacific temperature, salinity, sound velocity fronts, and the relation to the wind and energy flux fields. J Phys Oceanogr 5:557-571

    Google Scholar 

  • Roden GI (1980a) On the variability of surface temperature fronts in the western Pacific, as detected by satellite. J Geophys Res 85:2704-2710

    Google Scholar 

  • Roden GI (1980b) On the subtropical frontal zone north of Hawaii during winter. J Phys Oceanogr 10:342-362

    Google Scholar 

  • Roemmich D, Cornuelle B (1992) The subtropical mode waters of the South Pacific Ocean. J Phys Oceanogr 22:1178-1187

    Google Scholar 

  • Sasaki H, Xie SP, Taguchi B, Nonaka M, Hosoda S, Masumoto Y (2012) Interannual variations of the Hawaiian Lee countercurrent induced by low potential vorticity water ventilation in the subsurface. J Oceanogr. doi:10.1007/s10872-011-0074-8

  • Siedler G, Rouault M, Lutjeharms JRE (2006) Structure and origin of the subtropical South Indian Ocean countercurrent. Geophys Res Lett 33:L24609. doi:10.1029/2006GL027399

    Google Scholar 

  • Stommel H, Schott F (1977) The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Res 24:325-329

    Google Scholar 

  • Suga T, Hanawa K (1990) The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water. J Mar Res 48: 543-566

    Google Scholar 

  • Suga T, Hanawa K (1995) The subtropical mode water circulation in the North Pacific. J Phys Oceanogr 25:958-970

    Google Scholar 

  • Suga T, Hanawa K, Toba Y (1989) Subtropical mode water in the 137 E section. J Phys Oceanogr 19:1605-1618

    Google Scholar 

  • Suga T, Takei Y, Hanawa K (1997) Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27:140-152

    Google Scholar 

  • Suga T, Kato A, Hanawa K (2000) North Pacific tropical water: its climatology, temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr 47:223-256

    Google Scholar 

  • Suga T, Motoki K, Hanawa K (2003) Subsurface water masses in the central North Pacific transition region: the repeat section along the 180 meridian. J Oceanogr 59:435-444

    Google Scholar 

  • Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3-22

    Google Scholar 

  • Sugimoto S, Hanawa K (2005) Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys Res Lett 32:L01606. doi:10.1029/2004GL021410

    Google Scholar 

  • Sugimoto S, Hanawa K (2010) Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys Res Lett 37:L03606. doi:10.1029/2009GL041795

    Google Scholar 

  • Sumata H, Kubokawa A (2001) Numerical study of eastern boundary ventilation and its effects on the thermocline structure. J Phys Oceanogr 31:3002-3019

    Google Scholar 

  • Takeuchi K (1984) Numerical study of the subtropical front and the subtropical countercurrent. J Oceanogr Soc Jpn 40:371-381

    Google Scholar 

  • Takeuchi K (1986) Numerical study of the seasonal variations of the subtropical front and the subtropical countercurrent. J Phys Oceanogr 16:919-926

    Google Scholar 

  • Tanaka M (1992) Intraseasonal oscillation and the onset and retreat dates of the summer monsoon over East, Southeast Asia and the western Pacific region using GMS high cloud amount data. J Meteor Soc Jpn 70:613-629

    Google Scholar 

  • Taneda T, Suga T, Hanawa K (2000) Subtropical mode water variation in the northwestern part of the North Pacific subtropical gyre. J Geophys Res 105:19591-19598

    Google Scholar 

  • Thompson L, Cheng W (2008) Water masses in the Pacific in CCSM3. J Clim 21:4514-4528

    Google Scholar 

  • Thompson RORY, Edwards RJ (1981) Mixing and water-mass formation in the Australian subantarctic. J Phys Oceanogr 11:1399-1406

    Google Scholar 

  • Tokinaga H, Xie S-P, Kobashi F, Tanimoto Y (2009a) Local and remote influences of the Kuroshio Extension on the atmosphere.US CLIVAR Var 7:1-4

    Google Scholar 

  • Tokinaga H, Tanimoto Y, Xie S-P, Sampe T, Tomita H, Ichikawa H (2009b) Ocean frontal effects on the vertical development of clouds over the western North Pacific: in situ and satellite observations. J Clim 22:4241-4260

    Google Scholar 

  • Tsubouchi T, Suga T, Hanawa K (2007) Three types of South Pacific subtropical mode water: the relation to the large-scale circulation of the South Pacific subtropical gyre and their temporal variability. J Phys Oceanogr 37:2478-2490

    Google Scholar 

  • Tsubouchi T, Suga T, Hanawa K (2010) Indian Ocean subtropical mode water: its water characteristics and spatial distribution. Ocean Sci 6:41-50

    Google Scholar 

  • Tsuchiya M (1985) Evidence of a double-cell subtropical gyre in the South Atlantic Ocean. J Mar Res 43:57-65

    Google Scholar 

  • Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201-210

    Google Scholar 

  • Vianna ML, Menezes VV (2010) Mean mesoscale global ocean currents from geodetic pre-GOCE MDTs with a synthesis of the North Pacific circulation. J Geophys Res 115:C02016. doi:10.1029/2009JC005494

    Google Scholar 

  • Wang B, Lin Ho (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386-398

    Google Scholar 

  • Welander P (1959) An advective model of ocean thermocline. Tellus 11:309-318

    Google Scholar 

  • Welander P (1981) Mixed layer and fronts in simple ocean circulation model. J Phys Oceanogr 11:148-152

    Google Scholar 

  • White WB, Hasunuma K (1982) Quasi-stationary banded structure in the mean zonal geostrophic current regimes of the western North Pacific. J Mar Res 40:1035-1046

    Google Scholar 

  • White WB, Walker AE (1985) The influence of the Hawaiian Archipelago upon the wind-driven subtropical gyre in the western North Pacific. J Geophys Res 90:7061-7074

    Google Scholar 

  • White WB, Hasunuma K, Solomon H (1978) Large-scale seasonal, secular variability of the subtropical front in the western North Pacific from 1954 to 1974. J Geophys Res 83:4531-4544

    Google Scholar 

  • Worthington LV (1959) The 18 water in the Sargasso Sea. Deep Sea Res 5:297-305

    Google Scholar 

  • Wyrtki K (1975) Fluctuations of the dynamic topography in the Pacific Ocean. J Phys Oceanogr 5:450-459

    Google Scholar 

  • Xie S-P, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958-1997: a GCM simulation. J Phys Oceanogr 30:2798-2813

    Google Scholar 

  • Xie S-P, Liu WT, Liu Q, Nonaka M (2001) Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system. Science 292:2057-2060

    Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966-986

    Google Scholar 

  • Xie S-P, Xu L-X, Liu Q, Kobashi F (2011) Dynamical role of mode- water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212-1225

    Google Scholar 

  • Xu L-X, Xie S-P, Liu Q, Kobashi F (2012) Response of the North Pacific subtropical countercurrent and its variability to global warming. J Oceanogr. doi:10.1007/s10872-011-0031-6

  • Yamanaka G, Ishizaki H, Hirabara M, Ishikawa I (2008) Decadal variability of the subtropical front of the western North Pacific in an eddy-resolving ocean general circulation model. J Geophys Res 113:C12027. doi:10.1029/2008JC005002

    Google Scholar 

  • Yasuda T, Hanawa K (1997) Decadal changes in the mode waters in the midlatitude North Pacific. J Phys Oceanogr 27:858-870

    Google Scholar 

  • Yasuda T, Hanawa K (1999) Composite analysis of North Pacific subtropical mode water properties with respect to the strength of the wintertime East Asian monsoon. J Oceanogr 55:531-541

    Google Scholar 

  • Yoshida K, Kidokoro T (1967a) A subtropical countercurrent in the North Pacific—an eastward flow near the subtropical conver-gence. J Oceanogr Soc Jpn 23:88-91

    Google Scholar 

  • Yoshida K, Kidokoro T (1967b) A subtropical countercurrent (II)—a prediction of eastward flows at lower subtropical latitudes. J Oceanogr Soc Jpn 23:231-236

    Google Scholar 

  • Young RW, Rhines PB (1982) A theory of the wind-driven circulation II. Circulation models and western boundary layers. J Mar Res 40:849-872

    Google Scholar 

  • Yu Z, Maximenko N, Xie SP, Nonaka M (2003) On the termination of the Hawaiian Lee countercurrent. Geophys Res Lett 30(5):1215. doi:10.1029/2002GL016710

    Google Scholar 

  • Yuan X, Talley LD (1996) The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. J Geophys Res 101:16491-16508

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Shang-Ping Xie for many fruitful discussion and comments. Constructive comments from anonymous reviewers greatly helped improve the manuscript. This study is partially supported by Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan [20740267, 22106007, 23340139]. The altimeter product was produced by Ssalto/ Duacs and distributed by AVISO, with support from CNES. The SST dataset was obtained from the NOAA website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Kobashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 The Oceanographic Society of Japan and Springer

About this chapter

Cite this chapter

Kobashi, F., Kubokawa, A. (2011). Review on North Pacific Subtropical Countercurrents and Subtropical Fronts: role of mode waters in ocean circulation and climate. In: Kubokawa, A., Xie, SP., Kobashi, F., Mitsudera, H. (eds) New Developments in Mode-Water Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54162-2_2

Download citation

Publish with us

Policies and ethics