Skip to main content

Water-Hydroxyl Complexes: Direct Observation of a Symmetric Hydrogen Bond

  • Chapter
  • First Online:
Visualization of Hydrogen-Bond Dynamics

Part of the book series: Springer Theses ((Springer Theses,volume 125))

  • 811 Accesses

Abstract

I describe the hydration of a hydroxyl group with a water molecule on a Cu(110) surface and the characterization of water-hydroxyl complexes in this chapter. Two different structural isomers are selectively produced depending on the initial geometry of the reactants before the reaction. These isomers are employed as a model system to examine the nature of H-bond. A combination of STM experiments with DFT calculations reveals that one of the isomers forms “a low-barrier H bond” due to the strong interaction between water and hydroxyl, where the zero-point nuclear motion plays a crucial role to determine the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DFT calculations were performed using the STATE code [Y. Morikawa et al. Phys. Rev. B 69, 041403 (2004).] The calculations were conducted within the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation [J. P. Perdew et al. Phys. Rev. Lett. 77, 3865 (1996).]. PBE slightly overestimates the binding energies of H2O dimer, and slightly underestimates the proton transfer barrier at a short distance (~2.5 Å), but is sufficiently accurate for the present purpose. The surface was modeled by a five-layer Cu slab with an H2O-OH complex aligned along the [001] ([1\( \bar{1} \)0]) direction in a 3 × 3 (2 × 4) periodicity, and a 4 × 4 k-point set was used to sample the Brillouin zone. The adsorbates were put on one side of the slab, and the spurious electrostatic interaction was eliminated by the effective screening medium method [M. Otani and O. Sugino, Phys. Rev. B 73, 115407 (2006); I. Hamada et al. ibid. 80, 165411 (2009).]. Adsorbates and the topmost two Cu layers were allowed to relax, while remaining Cu atoms are fixed at their respective bulk positions.

    .

References

  1. W.W. Cleland, M.M. Kreevoy, Science 264, 1887 (1994)

    Article  CAS  Google Scholar 

  2. P.A. Frey, S.A. Whitt, J.B. Tobin, Science 264, 1927 (1994)

    Article  CAS  Google Scholar 

  3. M.E. Tuckerman, D. Marx, M.L. Klein, M. Parrinello, Science 275, 817 (1997)

    Article  CAS  Google Scholar 

  4. M.E. Tuckerman, D. Marx, M. Parrinello, Nature 417, 925 (2002)

    Article  CAS  Google Scholar 

  5. P.W. Atkins, Physical Chemistry 6th end. 740-741 (Oxford Univ. Press, Oxford, 1998)

    Google Scholar 

  6. C.J.T. de Grotthuss, Ann. Chim. 58, 5 (1806)

    Google Scholar 

  7. C. Reid, J. Chem. Phys.30, 182 (1959)

    Google Scholar 

  8. R. Pomès, B. Roux, J. Phys. Chem. 100, 2519 (1996)

    Article  Google Scholar 

  9. P. Loubeyre, R. LeToullec, E. Wolanin, M. Hanfland, D. Hausermann, 397, 503 (Nature, London, 1999)

    Article  CAS  Google Scholar 

  10. R. Ubbelohde, K.J. Gallagher, Acta Crystallogr. 8, 71 (1975)

    Article  Google Scholar 

  11. G. Held, D. Menzel, Phys. Rev. Lett. 74, 4221 (1995)

    Article  CAS  Google Scholar 

  12. G. Held, D. Menzel, Suf. Sci. 316, 92 (1994)

    Article  CAS  Google Scholar 

  13. A. Michaelides, P. Hu, J. Am. Chem. Soc. 123, 4235 (2001)

    Article  CAS  Google Scholar 

  14. P.J. Feibelman, Science 295, 99 (2002)

    Article  CAS  Google Scholar 

  15. S. Völkening, K. Bedürftig, K. Jacobi, J. Wintterlin, G. Ertl, Phys. Rev. Lett. 83, 2672 (1999)

    Article  Google Scholar 

  16. C. Clay, S. Haq, A. Hodgson, Phys. Rev. Lett. 92, 046102 (2004)

    Article  CAS  Google Scholar 

  17. T. Schiros, L.-Å. Näslund, K. Andersson, J. Gyllenpalm, G.S. Karlberg, M. Odelius, H. Ogasawara, L.G M. Pettersson, and A. Nilsson. J. Phys. Chem. C 111, 15003 (2007)

    Article  CAS  Google Scholar 

  18. L. Giordano, J. Goniakowski, J. Suzanne, Phys. Rev. Lett. 81, 1271 (1998)

    Article  CAS  Google Scholar 

  19. Y.D. Kim, R.M. Lynden-Bell, A. Alavi, J. Stulz, D.W. Goodman, Chem. Phys. Lett. 352, 318 (2002)

    Article  CAS  Google Scholar 

  20. B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, C. Wöll, Angew. Chem. Int. Ed. 43, 6641 (2004)

    Article  CAS  Google Scholar 

  21. A. Michaelides, A. Alavi, D.A. King, Phys. Rev. B 69, 113404 (2004)

    Article  Google Scholar 

  22. X.-Z. Li, M.I.J. Probert, A. Alavi, A. Michaelides, Phys. Rev. Lett. 104, 066102 (2010)

    Article  Google Scholar 

  23. G. Herzberg, Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules (Van Nostrand, Princeton, 1950)

    Google Scholar 

  24. P.A. Giguère, Rev. Chim. Miner. 20, 588 (1983)

    Google Scholar 

  25. S.S. Xantheas, J. Am. Chem. Soc. 117, 10373 (1995)

    Article  CAS  Google Scholar 

  26. M. Polak, Surf. Sci. 321, 249 (1994)

    Article  CAS  Google Scholar 

  27. K. Bange, D.E. Grider, T.E. Madey, J.K. Sass, Surf. Sci. 137, 38 (1984)

    Article  CAS  Google Scholar 

  28. A. Spitzer, H. Lüth, Surf. Sci. 160, 353 (1985)

    Article  CAS  Google Scholar 

  29. Ch. Ammon, A. Bayer, H.-P. Steinrück, G. Held, Chem. Phys. Lett. 377, 163 (2003)

    Article  CAS  Google Scholar 

  30. K. Andersson, A. Gómez, C. Glover, D. Nordlund, H. Öström, T. Schiros, O. Takahashi, H. Ogasawara, L.G.M Pettersson and A. Nilsson. Surface Science Letters 585, 183 (2005)

    Article  Google Scholar 

  31. K. Andersson, G. Ketteler, H. Bluhm, S. Yamamoto, H. Ogasawara, L.G.M. Pettersson, M. Salmeron, A. Nilsson, J. Am. Chem. Soc. 130, 2793 (2008)

    Article  CAS  Google Scholar 

  32. J. Lee, D.C. Sorescu, K.D. Jordan, J.T. Yates Jr, J. Phys. Chem. C 112, 17672 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kumagai .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Kumagai, T. (2012). Water-Hydroxyl Complexes: Direct Observation of a Symmetric Hydrogen Bond. In: Visualization of Hydrogen-Bond Dynamics. Springer Theses, vol 125. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54156-1_9

Download citation

Publish with us

Policies and ethics