Skip to main content

A Dynamic Resilience Perspective Toward Integrated Ecosystem Management: Biodiversity, Landscape, and Climate

  • Chapter
  • First Online:
Biodiversity in Aquatic Systems and Environments

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Ecosystems often show sudden and drastic shifts in their states following relatively small environmental changes, yet the environmental restoration does not necessarily easily recover the original state. The resilience theory has played a pivotal role in ecosystem management by providing a theoretical basis for such abrupt and irreversible phase transitions (i.e., regime shifts). However, a major concern remains that the existing theory considers ecosystem responses along only a single disturbance axis (e.g., eutrophication), despite the fact that natural ecosystems are subject to multiple anthropogenic disturbances. In this chapter, I introduce ontogenetic niche shifts (i.e., changes in resource use or predation vulnerability during individual growth) as a possible common mechanism of regime shifts. Based on this framework, I show how additional factors not accounted for the basic resilience theory (e.g., species extinction and invasion, habitat loss and fragmentation, and phenological shifts) may affect whether or where regime shifts occur along environmental gradients. I conclude that these results taken together illustrate the importance of interdisciplinary research integrating biodiversity conservation, landscape protection, and climate change adaptation for more effective management of lake ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams P (2004) When does periodic variation in resource growth allow robust coexistence of competing consumer species? Ecology 85:372–382

    Article  Google Scholar 

  • Abrams P (2009) When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecol Lett 12:462–474

    Article  PubMed  Google Scholar 

  • Andersen T, Carstensen J, Hernández-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24:49–57

    Article  PubMed  Google Scholar 

  • Awiti AO (2011) Biological diversity and resilience: lessons from the recovery of cichlid species in Lake Victoria. Ecol Soc 16:9

    Google Scholar 

  • Baxter CV, Fausch K, Saunders WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220

    Article  Google Scholar 

  • Beebee TJC (1995) Amphibian breeding and climate. Nature 374:219–220

    Article  CAS  Google Scholar 

  • Briones JC, Tsai CH, Nakazawa T, Sakai Y, Papa RD, Hsieh CH, Okuda N (2012) Long-term changes in the diet of Gymnogobius isaza from Lake Biwa, Japan: effects of body size and environmental prey availability. PLoS One 7:e53167. doi:10.1371/journal.pone.0053167

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Collinge SK (2009) Ecology of fragmented landscapes. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526

    Article  CAS  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match mismatch hypothesis. Adv Mar Biol 26:249–293

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • de Roos AM, Leonardsson K, Persson L, Mittelbach GG (2002) Ontogenetic niche shifts and flexible behavior in size-structured populations. Ecol Monogr 72:271–292

    Article  Google Scholar 

  • de Roos AM, Schellekens T, van Kooten T, van de Wolfshaar K, Claessen D, Persson L (2007) Food-dependent growth leads to overcompensation in stage-specific biomass when mortality increases: he influence of maturation versus reproduction regulation. Am Nat 170:E59–E76

    Article  PubMed  Google Scholar 

  • de Roos AM, Schellekens T, Van Kooten T, Persson L (2008) Stage-specific predator species help each other to persist while competing for a single prey. Proc Natl Acad Sci U S A 105:13930–13935

    Article  PubMed  Google Scholar 

  • Eby LA, Roach WJ, Crowder LB, Stanford JA (2006) Effects of stocking-up freshwater food webs. Trends Ecol Evol 21:576–584

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Fukami T (2004) Community assembly along a species pool gradient: implications for multiple-scale patterns of species diversity. Popul Ecol 46:137–147

    Article  Google Scholar 

  • Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol Lett 14:973–984

    Article  PubMed  Google Scholar 

  • Genkai-Kato M (2007) Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity. Ecol Lett 10:105–114

    Article  PubMed  Google Scholar 

  • Genkai-Kato M, Carpenter SR (2005) Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86:210–219

    Article  Google Scholar 

  • Genkai-Kato M, Vadeboncoeur Y, Liboriussen L, Jeppesen E (2012) Benthic–planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes. Ecology 93:619–631. http://dx.doi.org/10.1890/10-2126.1

    Google Scholar 

  • Guill C (2009) Alternative dynamical states in stage-structured consumer populations. Theor Popul Biol 76:168–178

    Article  PubMed  Google Scholar 

  • Gunderson LH (2000) Ecological resilience–in theory and application. Annu Rev Ecol Evol Syst 31:425–439

    Article  Google Scholar 

  • Hannah LJ (2010) Climate change biology. Elsevier, Burlington

    Google Scholar 

  • Hickley P, Chare S (2004) Fisheries for non-native species in England and Wales: angling or the environment? Fish Manage Ecol 11:203–212

    Article  Google Scholar 

  • Hildrew AG, Raffaelli DR, Edmonds-Brown R (2007) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Holyoak M, Leibold MA, Holt RD (2005) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago

    Google Scholar 

  • Hsieh CH, Ishikawa K, Sakai Y, Ishikawa T, Ichise S, Yamamoto Y, Kuo TC, Park HD, Yamamura N, Kumagai M (2010) Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat Sci 72:467–483

    Article  CAS  Google Scholar 

  • Hsieh CH, Sakai Y, Ban S, Ishikawa K, Ishikawa T, Ichise S, Yamamura N, Kumagai M (2011) Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa. Biogeosciences 8:1383–1399

    Article  CAS  Google Scholar 

  • Iguchi K, Ohkawa T, Nishida M (2008) Genetic structure of land-locked ayu within the Biwa Lake system. Fish Sci 68:138–143

    Article  Google Scholar 

  • Jansson M, Persson L, de Roos AM, Jones RI, Tranvik LJ (2007) Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol Evol 22:316–322

    Article  PubMed  Google Scholar 

  • Kawanabe H, Nishino M, Maehata M (2012) Lake Biwa: interactions between nature and people. Springer Academic, Amsterdam

    Book  Google Scholar 

  • Kernan M, Battarbee RW, Moss BR (2010) Climate change impacts on freshwater ecosystems. Wiley-Blackwell, West Sussex

    Book  Google Scholar 

  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437:880–883

    Article  PubMed  CAS  Google Scholar 

  • Law R (1999) Theoretical aspects of community assembly. In: McGlade J (ed) Advanced ecological theory. Blackwell, Oxford

    Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6:673–679

    Article  Google Scholar 

  • Lovejoy T, Hannah L (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • Lovel G (1997) Biodiversity: global change through invasion. Nature 388:627–628

    Article  Google Scholar 

  • Mayer AL, Rietkerk M (2004) The dynamic regime concept for ecosystem management and restoration. BioScience 54:1013–1020

    Article  Google Scholar 

  • McCoy MW, Barfield M, Holt RD (2009) Predator shadows: complex life histories as generators of spatially patterned indirect interactions across ecosystems. Oikos 118:87–100

    Article  Google Scholar 

  • Miller TEX, Rudolf VHW (2011) Thinking inside the box: community-level consequences of stage structured populations. Trends Ecol Evol 26:457–466

    Article  PubMed  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  PubMed  CAS  Google Scholar 

  • Nakai K (1999) Recent, faunal changes in Lake Biwa, with particular reference to the bass fishing boom in Japan. In: Kawanabe H, Coulter GW, Roosevelt AC (eds) Ancient lakes: their cultural and biological diversity. Kenobi Productions, Ghent, pp 227–241

    Google Scholar 

  • Nakanish M, Sekino T (1996) Recent drastic changes in Lake Biwa bio-communities, with special attention to exploitation of the littoral zone. GeoJournal 40:63–67

    Google Scholar 

  • Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci U S A 98:166–170

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T (2011a) Ontogenetic niche shift, food-web coupling, and alternative stable states. Theor Ecol 4:479–492

    Article  Google Scholar 

  • Nakazawa T (2011b) Alternative stable states generated by ontogenetic niche shift in the presence of multiple resource use. PLoS One 6:e14667

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Doi H (2012) A perspective on match/mismatch of phenology in community contexts. Oikos 121:489–495

    Article  Google Scholar 

  • Nakazawa T, Yamamura N (2007) Breeding migration and population stability. Popul Ecol 49:101–113

    Article  Google Scholar 

  • Nakazawa T, Ishida N, Kato M, Yamamura N (2007) Larger body size with higher predation rate. Ecol Freshw Fish 16:362–372

    Article  Google Scholar 

  • Nakazawa T, Ushio M, Kondoh M (2011) Scale dependence of predator–prey mass ratio: determinants and applications. In: Belgrano A, Reiss J (eds) The role of body size in multispecies systems. Adv Ecol Res 45:269–302

    Google Scholar 

  • Namba T (1984) Competitive co-existence in a seasonally fluctuating environment. J Theor Biol 111:369–386

    Article  Google Scholar 

  • Ohlberger J, Langangen Ø, Edeline E, Claessen D, Winfield I, Stenseth N, Vollestad A (2012) Stage-specific biomass overcompensation by juveniles in response to increased adult mortality in a wild fish population. Ecology. doi:10.1890/11-0410.1

    Google Scholar 

  • Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466:482–485

    Article  PubMed  CAS  Google Scholar 

  • Persson L, Andersson J, Wahlstrom E, Eklov P (1996) Size-specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology 77:900–911

    Article  Google Scholar 

  • Persson L, Amundsen PA, de Roos AM, Klementsen A, Knudsen R, Primicerio P (2007) Culling prey promotes predator recovery–alternative stable states in a whole lake experiment. Science 316:1743–1746

    Article  PubMed  CAS  Google Scholar 

  • Peterson GD (2002) Forest dynamics in the southeastern U S: managing multiple stable states. In: Gunderson LH, Pritchard L Jr (eds) Resilience and the behavior of large-scale ecosystems. Island, Washington, DC, pp 227–246

    Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18

    Article  Google Scholar 

  • Polis GA, Power ME, Huxel GR (2004) Food webs at the landscape level. University of Chicago Press, Chicago

    Google Scholar 

  • Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology 89:363–370

    Article  PubMed  Google Scholar 

  • Postel S, Carpenter SR (1997) Freshwater ecosystem services. In: Daily G (ed) Nature’s services. Island, Washington, DC

    Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  • Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288:854–856

    Article  PubMed  CAS  Google Scholar 

  • Reñones O, Polunin NVC, Goni R (2002) Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: an isotope and stomach content analysis. J Fish Biol 61:122–137

    Article  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman and Hall, New York

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  PubMed  CAS  Google Scholar 

  • Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189

    Article  Google Scholar 

  • Schreiber S, Rudolf VHW (2008) Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecol Lett 11:576–587

    Article  PubMed  Google Scholar 

  • Schröder A, Persson L, de Roos AM (2005) Direct experimental evidence for alternative stable states: a review. Oikos 110:3–19

    Article  Google Scholar 

  • Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Change Biol 15:1394–1404

    Article  Google Scholar 

  • Shibata J, Karube Z, Oishi M, Yamaguchi M, Goda Y, Okuda N (2010) Physical structure of habitat network differently affects migration patterns of native and invasive fishes in Lake Biwa and its tributary lagoons: stable isotope approach. Popul Ecol 53:143–153

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–355

    Article  CAS  Google Scholar 

  • Suzuki S, Iwasa Y (2009) The coupled dynamics of human socio-economic choice and lake water system: the interaction of two sources of nonlinearity. Ecol Res 24:479–489

    Article  Google Scholar 

  • Takahashi D, Ohara K (2004) Genetic variations estimated from PCR-RFLP analysis of two morphs of the freshwater goby Rhinogobius in the Lake Biwa water system. Ichthyol Res 51:99–105

    Article  Google Scholar 

  • Takai N, Sakamoto W (1999) Identification of local populations of Lake Biwa catfish Silurus biwaensis in Japan on the basis of δ13C and δ15N analyses. Can J Zool 77:258–266

    Google Scholar 

  • Takimoto G (2003) Adaptive plasticity in ontogenetic niche shifts stabilizes consumer-resource dynamics. Am Nat 162:93–109

    Article  PubMed  Google Scholar 

  • Taylor SG (2007) Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob Change Biol 14:229–235

    Article  Google Scholar 

  • Tsugeki NK, Urabe J, Hayami Y, Kuwae M, Nakanishi M (2010) Phytoplankton dynamics in Lake Biwa during the 20th century: complex responses to climate variation and changes in nutrient status. J Paleolimnol 44:69–83

    Article  Google Scholar 

  • Vincenzi S, Satterthwaite WH, Mangel M (2012) Spatial and temporal scale of density-dependent body growth and its implications for recruitment, population dynamics and management of stream-dwelling salmonid populationse. Rev Fish Biol Fish. doi:10.1007/s11160-011-9247-1

    Google Scholar 

  • Walter C, Kiutchell JF (2001) Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Can J Fish Aquat Sci 58:39–50

    Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Xu J, Zhang M, Xie P (2007) Size-related shifts in reliance on benthic and pelagic food webs by lake anchovy. Ecoscience 14:170–177

    Article  Google Scholar 

  • Yang LH, Rudolf VHW (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol Lett 13:1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank anonymous reviewers for valuable comments on the manuscript. This research was supported by the Japan Society for Promotion of Science Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Okuda, N., Watanabe, K., Fukumori, K., Nakano, Si., Nakazawa, T. (2014). A Dynamic Resilience Perspective Toward Integrated Ecosystem Management: Biodiversity, Landscape, and Climate. In: Biodiversity in Aquatic Systems and Environments. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54150-9_4

Download citation

Publish with us

Policies and ethics