Skip to main content

Biodiversity Researches on Microbial Loop in Aquatic Systems

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

The food linkage between heterotrophic bacteria and protists is so-called “microbial loop,” functioning as important matter cycling in pelagic food webs. Biomass of heterotrophic bacteria sometimes predominates total heterotrophic biomass in lakes, and organic matter transfer started from heterotrophic bacteria has been intensively studied by numerous researchers all over the world. The roles of planktonic protists, such as heterotrophic nanoflagellates and ciliates, in microbial loop are to consume bacteria that are too small to serve directly as major prey items for most zooplankters, and to be themselves utilized by the zooplankton. There is a consensus that food linkages between bacteria and protists are substantial in many lakes. In addition, bacterial loss due to viral lysis has also been paid great attention by many researchers since the late 1990. The present review provides the overview on the trend and future stage of microbial loop researches in freshwater systems, with special reference to culture-independent molecular techniques such as PCR cloning and sequencing, fluorescently in situ hybridization or denaturing gradient gel electrophoresis for phylogenetic analyses on microbial communities. A review on ecology and biodiversity researches on microbial loop in Lake Biwa is also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrian R, Wickham SA, Butler NM (2001) Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquat Microb Ecol 24:83–97

    Google Scholar 

  • Auer B, Arndt H (2001) Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshw Biol 46:959–972

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoans in freshwater lakes. Limnol Oceanogr 27:246–253

    Google Scholar 

  • Bergh O, Borsheim YK, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    PubMed  CAS  Google Scholar 

  • Bettarel Y, Sime-Ngando T, Amblard C, Dolan J (2004) Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol 70:2941–2951

    PubMed  CAS  Google Scholar 

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–495

    PubMed  CAS  Google Scholar 

  • Bloem J, Bar-Gilissen M-JB (1989) Bacterial activity and protozoan grazing potential in a stratified lake. Limnol Oceanogr 34:297–309

    Google Scholar 

  • Boenigk J, Arndt H, Cleven EJ (2001) The problematic nature of fluorescently labeled bacteria (FLB) in Spumella feeding experiments—an explanation by using video microscopy. Arch Hydrobiol 152:329–338

    Google Scholar 

  • Bratbak G, Heldal M, Thingstad TF, Riemann B, Haslund OH (1992) Incorporation of viruses into the budget of microbial C-transfer. A first approach. Mar Ecol Prog Ser 83:273–280

    Google Scholar 

  • Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen CC, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci 107:1612–1617

    PubMed  CAS  Google Scholar 

  • Burns CW, Schallenberg M (2001) Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status. Limnol Oceanogr 46:1558–1565

    CAS  Google Scholar 

  • Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat Microb Ecol 57:227–238

    Google Scholar 

  • Caron DA, Finlay BJ (1994) Protozoan links in food webs. In: Hausmann K, Hulsmann N (eds) Progress in protozoology, Gustav Fisher Verlag, Stuttgart, pp 125–130

    Google Scholar 

  • Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568

    PubMed  Google Scholar 

  • Colombet J, Sime-Ngando T, Cauchie HM, Fonty G, Hoffmann L, Demeure G (2006) Depth-related gradients of viral activity in Lake Pavin. Appl Environ Microbiol 72:4440–4445

    PubMed  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    PubMed  CAS  Google Scholar 

  • Countway PD, Gast RJ, Savai P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106

    PubMed  CAS  Google Scholar 

  • Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA (2007) Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol 9:1219–1232

    PubMed  CAS  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    PubMed  CAS  Google Scholar 

  • Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Esteban GF, Fenchel T (1998) Protozoan diversity: converging estimates of the global number of free-living ciliate species. Protist 149:29–37

    PubMed  CAS  Google Scholar 

  • Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    PubMed  CAS  Google Scholar 

  • Fukuda M, Ashida A, Tomaru Y, Nakano S (2004) An improved method for collecting heterotrophic microorganisms inhabiting on pebbles in streams. Limnology 5:41–46

    Google Scholar 

  • Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, de Oliveira TCS, Garcia JW, de Miranda P, Henrique-Silva F (2011) Metagenomics of the water column in the pristine upper course of the Amazon River. PLoS One 6:e23785

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    PubMed  CAS  Google Scholar 

  • Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  • Gurung TB, Urabe J (1999) Temporal and vertical difference in factors limiting growth rate of heterotrophic bacteria in Lake Biwa. Microb Ecol 38:136–145

    PubMed  Google Scholar 

  • Gurung TB, Nakanishi M, Urabe J (2000) Seasonal and vertical difference in negative and positive effects of grazers on heterotrophic bacteria in Lake Biwa. Limnol Oceanogr 45:1689–1696

    Google Scholar 

  • Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessaries cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254

    PubMed  CAS  Google Scholar 

  • Hahn MW (2006) The microbial diversity of inland waters. Curr Opin Biotechnol 17:256–261

    PubMed  CAS  Google Scholar 

  • Hahn MW, Kasalický V, Jezbera J, Brandt U, Jezberová J, Šimek K (2010a) Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365

    PubMed  CAS  Google Scholar 

  • Hahn MW, Kasalický V, Jazbera J, Brandt U, Šimek K (2010b) Limnohabitans australis sp. nov., isolated from freshwater pond, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2946–2950

    PubMed  CAS  Google Scholar 

  • Hahn MW, Sheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K, Vannini C, Petron G, Wu QL (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS One 7:e32772

    PubMed  CAS  Google Scholar 

  • Hansen AM (2000) Response of ciliates and Cryptomonas to the spring cohort of a cyclopoid in a shallow hypereutrophic lake. J Plankton Res 22:185–203

    Google Scholar 

  • Hong PY, Hwang C, Ling F, Anersen GL, LeChevallier MW, Liu WT (2010) Analysis of bacgterial biofilm communities in water meters of a drinking water distribution system via pyrosequencing. Appl Environ Microbiol. doi:10.1128/AEM.00281-10

    Google Scholar 

  • Honjo M, Matsui K, Ishii N, Nakanishi M, Kawabata Z (2007) Viral abundance and its related factors in a stratified lake. Fundam Appl Limnol 168:105–112

    Google Scholar 

  • Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K (2006) Effects fo resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45:277–289

    Google Scholar 

  • Hsieh CH, Ishikawa K, Sakai Y, Ishikawa T, Ichise S, Yamamoto Y, Kuo TC, Park H-D, Yamamura N, Kumagai M (2010) Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat Sci 72:467–483

    CAS  Google Scholar 

  • Ichinotuska D, Ueno H, Nakano S (2006) The relative importance of nanoflagellates and ciliates as consumers of bacteria in a coastal sea area (Japan), where the oligotrichous Strombidium spp. and Strobilidium spp. dominate. Aquat Microb Ecol 42:139–147

    Google Scholar 

  • Jezberová J, Jezbera J, Brandt U, Lindström ES, Langenheder S, Hahn MW (2010) Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12:658–669

    PubMed  Google Scholar 

  • Jones R (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226

    Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Google Scholar 

  • Kasalický V, Jezbera J, Šimek K, Hahn MW (2010) Limnohabitans planktonicus sp. nov., and Limnohabitans parvus sp. nov., two novel planktonic Betaproteobacteria isolated from a freshwater reservoir and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714

    PubMed  Google Scholar 

  • Kawabata K (1987a) Ecology of large phytoplankters in Lake Biwa: population dynamics and food relations with zooplankters. Bull Plankton Soc Jpn 34:165–172

    Google Scholar 

  • Kawabata K (1987b) Abundance and distribution of Eodiaptomus japonicus (Copepoda: Calanoida) in Lake Biwa. Bull Plankton Soc Jpn 34:173–183

    Google Scholar 

  • Kawabata K (1989) Seasonal changes in abundance and vertical distribution of Mesocyclops thermocyclopoides, Cyclops vicinus and Daphnia longispina in Lake Biwa. Jpn J Limnol 50:9–13

    Google Scholar 

  • Kawabata K (1991) Ontogenic changes in copepod behavior: an ambush cyclopoid predator and a calanoid prey. J Plankton Res 13:27–34

    Google Scholar 

  • Kawabata K (1993) Mortality rate of Eodiaptomus japonicas (Copepoda: Calanoida) in Lake Biwa. Jpn J Limnol 54:131–136

    Google Scholar 

  • Kawabata K (1995) Ongogenic niches of a planktonic copepod in Lake Biwa studied on a fine temporal scale. Ecol Res 10:207–215

    Google Scholar 

  • Kawabata K (2012) Pelagic copepods. In: Kawanabe H, Nishino M, Maehata M (eds) Lake Biwa: interactions between nature and people. Springer, Tokyo, pp 93–96

    Google Scholar 

  • Kawabata K, Nakanishi M (1996) Food web structure and biodiversity in lake ecosystems. In: Abe T, Levin S, Higashi M (eds) Biodiversity: an ecological perspective. Springer, New York, pp 203–213

    Google Scholar 

  • Kawanabe NM, Maehata M (2012) Lake Biwa: interactions between nature and people. Springer, Tokyo

    Google Scholar 

  • Kerner M, Hohenberg H, Ertl S, Reckermann M, Spitzy A (2003) Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature 422:150–154

    PubMed  CAS  Google Scholar 

  • Kimura B, Ishida Y (1985) Photophagotrophy in Uroglena Americana, Chrysophyceae. Jpn J Limnol 46:315–318

    Google Scholar 

  • Landry MR (1994) Methods and controls for measuring the grazing impact of planktonic protists. Mar Microb Food Webs 8:37–57

    Google Scholar 

  • Landry MR, Lehner-Fournier JM, Sundstrom JA, Fagerness VL, Selph KE (1991) Discrimination between living and heat-killed prey by a marine zooflagellate, Paraphysomonas vestita (Stokes). J Exp Mar Biol Ecol 146:139–151

    Google Scholar 

  • Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094

    PubMed  Google Scholar 

  • Lim EL, Dennet MR, Caron DA (1999) The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol Oceanogr 44:37–51

    Google Scholar 

  • Logares R, Audic S, Santini S, Pernice MC, de Vargas C, Massana R (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833

    PubMed  CAS  Google Scholar 

  • Logue JB, Langenheder S, Andersson AF, Bertilsson S, Drakare S, Lanzén A, Lindström ES (2012) Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species-area relationships. ISME J 6:1127–1136

    PubMed  CAS  Google Scholar 

  • Massana R, Gillou L, Diez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    PubMed  CAS  Google Scholar 

  • Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    PubMed  CAS  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    PubMed  CAS  Google Scholar 

  • Massana R, Unrein F, Rodriguez-Martinez R, Forn I, Lefort T, Pinhassi J, Not F (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 3:588–596

    PubMed  CAS  Google Scholar 

  • Miura T, Cai QH (1990) Annual and seasonal occurrences of the zooplankters observed in the North Basin of Lake Biwa from 1965 to 1979. Contribution from Otsu Hydrobiological Station, Kyoto University 337:1–35

    Google Scholar 

  • Miyajima T, Nakanishi M, Nakano S, Tezuka Y (1994) An autumnal bloom of a diatom Melosira granulata in a shallow eutrophic lake: physical and chemical constraints on its population dynamics. Arch Hydrobiol 130:143–162

    CAS  Google Scholar 

  • Miyajima T, Nakano S, Nakanishi M (1995) Planktonic diatoms in pelagic silicate cycle in Lake Biwa. Jpn J Limnol 56:211–220

    CAS  Google Scholar 

  • Montagnes DJS, Lessard EJ (1999) Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat Microb Ecol 20:167–181

    Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    PubMed  CAS  Google Scholar 

  • Nagata T (1988) The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol Oceanogr 33:504–517

    Google Scholar 

  • Nakanishi M, Miyajima T, Nakano S, Tezuka Y (1992a) Studies on the occurrence of Anabaena and Microcystis blooms in Akanoi Bay of the south basin of Lake Biwa, with special attention to nutrient levels. Ann Rept Interdiscipl Res Inst Environ Sci 11:67–75

    CAS  Google Scholar 

  • Nakanishi M, Tezuka Y, Narita T, Mitamura O, Kawabata K, Nakano S (1992b) Phytoplankton primary production and its fate in a pelagic area of Lake Biwa. Arch Hydrobiol Beih Ergebn Limnol 35:47–67

    Google Scholar 

  • Nakano S (1994) Estimation of phosphorus release rate by bacterivorous flagellates in Lake Biwa. Jpn J Limnol 55:201–211

    Google Scholar 

  • Nakano S, Seike Y, Sekino T, Okumura M, Kawabata K, Fujinaga K, Nakanishi M, Mitamura O, Kumagai M, Hashitani H (1996) A rapid growth of Aulacoseira granulata (Bacillariophyceae) during the typhoon season in the south basin of Lake Biwa. In: Robarts RD, Kumagai M (eds) BITEX special issue, Jpn J Limnol 57:493–500

    Google Scholar 

  • Nakano S, Ishii N, Manage PM, Kawabata Z (1998a) Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol 16:153–161

    Google Scholar 

  • Nakano S, Koitabashi T, Ueda T (1998b) Seasonal changes in abundance of heterotrophic nanoflagellates and their consumption of bacteria in Lake Biwa with special reference to trophic interactions with Daphnia galeata. Arch Hydrobiol 142:21–34

    Google Scholar 

  • Nakano S, Manage PM, Nishibe Y, Kawabata Z (2001) Trophic linkage among heterotrophic nanoflagellates, ciliates and metazoan zooplankton in a hypereutrophic pond. Aquat Microb Ecol 25:259–270

    Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Nagata T (2007) Alphaproteobacterial dominance in a large mesotrophic lake (Lake Biwa, Japan). Aquat Microb Ecol 48:231–240

    Google Scholar 

  • Nishimura Y, Kim C, Nagata T (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic acid contents: possible regulation by phosphorus. Appl Environ Microbiol 71:5828–5836

    PubMed  CAS  Google Scholar 

  • Ohara S, Fukami K, Ishida Y (1993) Algal effects on the bacterial assemblage in Lake Biwa. Jpn J Limnol 54:261–268

    Google Scholar 

  • Okamura T, Mori Y, Nakano S, Kondo R (2012) Abundance and bacterivory of heterotrophic nanoflagellates in the meromictic Lake Suigetsu, Japan. Aquat Microb Ecol 66:149–158

    Google Scholar 

  • Okazaki Y, Hodoki Y, Nakano S (2013) Seasonal dominance of CL500-11 bacterioplankton (Phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 83(1):82–92

    Google Scholar 

  • Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    PubMed  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    PubMed  CAS  Google Scholar 

  • Pfandl K, Chatzinotas A, Dyal P, Boenigk J (2009) SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles, Chrysophyceae). Limnol Oceanogr 54:171–181

    CAS  Google Scholar 

  • Pradeep Ram AS, Sime-Ngando T (2008) Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J 2:498–509

    PubMed  Google Scholar 

  • Pradeep Ram AS, Nishimura Y, Tomaru Y, Nagasaki K, Nagata T (2010) Seasonal variation in viral-induced mortality of bacterioplankton in the water column of a large mesotrophic lake (Lake Biwa, Japan). Aquat Microb Ecol 58:249–259

    Google Scholar 

  • Riemann B, Søndergaard M (1986) Carbon dynamics in eutrophic temperate lakes. Elsevier, The Netherlands

    Google Scholar 

  • Salcher MM, Pernthaler J, Posch T (2011) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J 5:1242–1252

    PubMed  CAS  Google Scholar 

  • Sanders RW, Porter KG, Bennett SJ, Debiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687

    Google Scholar 

  • Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940

    PubMed  CAS  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81:293–308

    PubMed  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    PubMed  CAS  Google Scholar 

  • Šimek K, Bobkova K, Macek M, Nedoma J (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090

    Google Scholar 

  • Šimek K, Macek M, Seda J, Vyhnalek V (1990) Possible food chain relationships between bacterioplankton, protozoans and cladocerans in a reservoir. Int Rev Gesam Hydrobiol 75:583–596

    Google Scholar 

  • Šimek K, Pernthaler J, Weinbauer MG, Hornák K, Dolan JR, Nedoma J et al (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733

    PubMed  Google Scholar 

  • Šimek K, Straskrabova V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787

    Google Scholar 

  • Šimek K, Horňák K, Jezbera J, Mašín M, Nedoma J, Gasol JM, Schauer M (2005) Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of b-Proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71:2381–2390

    PubMed  Google Scholar 

  • Šimek K, Hornák K, Jezbera J, Nedoma J, Vrba J, Strakrábová V, Macek M, Dolan JR, Hahn MW (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624

    PubMed  Google Scholar 

  • Šimek K, Weinbauer MG, Hornak K, Jezbera J, Nedoma J, Dolan JR (2007) Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 9:789–800

    PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    PubMed  CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    PubMed  CAS  Google Scholar 

  • Tanaka N, Nakanishi M, Kadota H (1974) The excretion of photosynthetic product by natural phytoplankton population in Lake Biwa. Jpn J Limnol 35:91–98

    Google Scholar 

  • Tanaka N, Nakanishi M, Kadota H (1975) Seasonal variation of glycollate-utilizing bacteria in the water column of Lake Biwa. Bull Jpn Soc Sci Fish 41:1129–1134

    Google Scholar 

  • Tezuka Y, Nakano S (1993) Induction of Anabaena bloom by nutrient enrichment to the lake water collected from the south basin of Lake Biwa. Jpn J Limnol 54:85–90

    Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci 100:12776–12781

    PubMed  CAS  Google Scholar 

  • Tsugeki N, Oda H, Urabe J (2003) Fluctuation of the zooplankton community in Lake Biwa during the 20th century: a paleolimnological analysis. Limnology 4:101–107

    CAS  Google Scholar 

  • Tsujimura S, Ichise S (2012) Characteristics of the phytoplankton flora and long term changes in the phytoplankton community of Lake Biwa. In: Kawanabe H, Nishino M, Maehata M (eds) Lake Biwa: Interactions between nature and people. Springer, Tokyo, pp 41–48

    Google Scholar 

  • Urabe J, Grung TB, Yoshida T, Sekino T, Nakanishi M (2000) Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnol Oceanogr 45:1558–1563

    Google Scholar 

  • Warnecke F, Amman R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253

    PubMed  CAS  Google Scholar 

  • Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundance, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    PubMed  CAS  Google Scholar 

  • Watanabe K, Komatsu N, Ishii Y, Negishi M (2009) Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemicaly degraded dissolved organic matter. FEMS Microbiol Ecol 67:57–68

    PubMed  CAS  Google Scholar 

  • Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park H-D, Miyata R, Noda N, Sekiguchi Y, Satou T, Watanabe M, Yamamura S, Imai A, Hayashi S (2012) Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02815.x

    Google Scholar 

  • Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438

    PubMed  CAS  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Google Scholar 

  • Yokokawa T, Nagata T (2005) Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl Environ Microbiol 71:6799–6807

    PubMed  CAS  Google Scholar 

  • Yoshida T, Gurung TB, Kagami M, Urabe J (2001a) Contrasting effects of a cladoceran (Daphnia galeata)and a calanoid copepod (Eodiaptomus japonicus) on algal and microbial plankton in a Japanese lake, Lake Biwa. Oecologia 129:602–610

    Google Scholar 

  • Yoshida T, Kagami M, Gurung TB, Urabe J (2001b) Seasonal succession of zooplankton in the north basin of Lake Biwa. Aquat Ecol 35:19–29

    Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 3:660–703

    Google Scholar 

  • Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–227

    PubMed  CAS  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Google Scholar 

  • Zwart G, van Hannen EJ, Kamst-van Agterveld MP, Vander Gucht K, Lindström ES, Van Wichelen J, Lauridsen T, Crump BC, Han SK, Declerck S (2003) Rapid screening for freshwater bacterial group by using reverse line brot hybridization. Appl Environ Microbiol 69:5875–5883

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Okuda, N., Watanabe, K., Fukumori, K., Nakano, Si., Nakazawa, T. (2014). Biodiversity Researches on Microbial Loop in Aquatic Systems. In: Biodiversity in Aquatic Systems and Environments. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54150-9_3

Download citation

Publish with us

Policies and ethics