Skip to main content

Genome Features of Dark-fly

  • Chapter
  • First Online:
  • 677 Accesses

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Recent progress in genome science enables us to determine the whole genome sequences of laboratory-evolved organisms and to address the molecular mechanisms underlying environmental adaptation. We determined the whole genome sequence of Dark-fly and identified many genomic alterations in its genome. Analysis of the population genome structure revealed that about 5 % of genome regions were possibly selected during the Dark-fly history, and that 241 genes in those regions carry mutations. In addition, we identified 28 nonsense mutations in the Dark-fly genome, which probably disrupt or severely affect the function of the gene product. These results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation. These candidate genes include a light receptor, olfactory receptors, and enzymes related to detoxification and neural development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashburner M, Golic KG, Hawley SR (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247. doi:10.1038/nature08480

    Article  PubMed  CAS  Google Scholar 

  • Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 95:8170–8174

    Article  PubMed  CAS  Google Scholar 

  • Billeter J-C, Rideout EJ, Dornan AJ, Goodwin SF (2006) Control of male sexual behavior in Drosophila by the sex determination pathway. Curr Biol 16:R766–R776. doi:10.1016/j.cub.2006.08.025

    Article  PubMed  CAS  Google Scholar 

  • Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467:587–590. doi:10.1038/nature09352

    Article  PubMed  CAS  Google Scholar 

  • Chou H-H, Chiu H-C, Delaney NF, Segrè D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192. doi:10.1126/science.1203799

    Article  PubMed  CAS  Google Scholar 

  • Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657–671. doi:10.1016/s0896-6273(01)00515-3

    Article  PubMed  CAS  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  PubMed  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  • Denver DR, Morris K, Lynch M, Thomas WK (2004) High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682

    Article  PubMed  CAS  Google Scholar 

  • Edrey YH, Park TJ, Kang H, Biney A, Buffenstein R (2011) Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Exp Gerontol 46:116–123. doi:10.1016/j.exger.2010.09.005

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720. doi:10.1126/science.1113722

    Article  PubMed  CAS  Google Scholar 

  • Gardiner A, Barker D, Butlin RK, Jordan WC, Ritchie MG (2008) Drosophila chemoreceptor gene evolution: selection, specialization and genome size. Mol Ecol 17:1648–1657

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RJ, Ferveur JF (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232. doi:10.1146/annurev.genet.34.1.205

    Article  PubMed  CAS  Google Scholar 

  • Gross JB, Protas M, Conrad M, Scheid PE, Vidal O, Jeffery WR, Borowsky R, Tabin CJ (2008) Synteny and candidate gene prediction using an anchored linkage map of Astyanax mexicanus. Proc Natl Acad Sci USA 105:20106–20111. doi:10.1073/pnas.0806238105

    Article  PubMed  CAS  Google Scholar 

  • Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS One 5:e1000326

    Google Scholar 

  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628. doi:10.1016/j.devcel.2005.09.010

    Article  PubMed  CAS  Google Scholar 

  • Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Houle D, Charlesworth B, Keightley PD (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445:82–85. doi:10.1038/nature05388

    Article  PubMed  CAS  Google Scholar 

  • Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ (2005) Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochem Mol Biol 35:597–609. doi:10.1016/j.ibmb.2005.02.018

    Article  PubMed  CAS  Google Scholar 

  • Hermisson J, Pennings PS (2005) Soft sweeps. Genetics 169:2335–2352. doi:10.1534/genetics.104.036947

    Article  PubMed  CAS  Google Scholar 

  • Hooven LA, Sherman KA, Butcher S, Giebultowicz JM (2009) Does the clock make the poison? Circadian variation in response to pesticides. PLoS One 4:e6469. doi:10.1371/journal.pone.0006469

    Article  PubMed  Google Scholar 

  • Imafuku M, Haramura T (2011) Activity rhythm of Drosophila kept in complete darkness for 1300 generations. Zoolog Sci 28:195–198. doi:10.2108/zsj.28.195

    Article  PubMed  Google Scholar 

  • Izutsu M, Zhou J, Sugiyama Y, Nishimura O, Aizu T, Toyoda A, Fujiyama A, Agata K, Fuse N (2012) Genome features of "dark-fly", a Drosophila line reared long-term in a dark environment. PLoS One 7:e33288. doi:10.1371/journal.pone.0033288

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231:1–12. doi:10.1006/dbio.2000.0121

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2008) Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev 10:265–272

    Article  PubMed  Google Scholar 

  • Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:1–18. doi:10.3389/neuro.03.002.2009

    Article  Google Scholar 

  • Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML (2009) Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res 19:1195–1201. doi:10.1101/gr.091231.109

    Article  PubMed  CAS  Google Scholar 

  • Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:1193–1196. doi:10.1126/science.1203801

    Article  PubMed  CAS  Google Scholar 

  • Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–227

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto T, Iijima L, Tatsumi M, Ono N, Oyake A, Hashimoto T, Matsuo M, Okubo M, Suzuki S, Mori K, Kashiwagi A, Furusawa C, Ying B-W, Yomo T (2010) Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution. PLoS Genet 6:e1001164

    Article  PubMed  Google Scholar 

  • Lazard D, Zupko K, Poria Y, Net P, Lazarovits J, Horn S, Khen M, Lancet D (1991) Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 349:790–793. doi:10.1038/349790a0

    Article  PubMed  CAS  Google Scholar 

  • Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, Kucherlapati R, Malhotra AK (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 104:19942–19947. doi:10.1073/pnas.0710021104

    Article  PubMed  CAS  Google Scholar 

  • Luque T, O’Reilly DR (2002) Functional and phylogenetic analyses of a putative Drosophila melanogaster UDP-glycosyltransferase gene. Insect Biochem Mol Biol 32:1597–1604. doi:10.1016/s0965-1748(02)00080-2

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RRH, Barron M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M, Muzny DM, Nazareth L, Newsham I, Perales L, Pu L-L, Qu C, Ramia M, Reid JG, Rollmann SM, Rozas J, Saada N, Turlapati L, Worley KC, Wu Y-Q, Yamamoto A, Zhu Y, Bergman CM, Thornton KR, Mittelman D, Gibbs RA (2012) The Drosophila melanogaster genetic reference panel. Nature 482:173–178

    Article  PubMed  CAS  Google Scholar 

  • McQuillan R, Leutenegger A-L, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, Smolej-Narancic N, Janicijevic B, Polasek O, Tenesa A, MacLeod AK, Farrington SM, Rudan P, Hayward C, Vitart V, Rudan I, Wild SH, Dunlop MG, Wright AF, Campbell H, Wilson JF (2008) Runs of homozygosity in European populations. Am J Hum Genet 83:359–372. doi:10.1016/j.ajhg.2008.08.007

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  • Mori S (1986) Changes of characters of Drosophila melanogaster brought about during the life in constant darkness and considerations on the processes through which theses changes were induced. Zoolog Sci 3:945–957

    Google Scholar 

  • Mori S, Yanagishima S (1959) Variations of Drosophila in relation to its environment VII Does Drosophila change its characters during dark life? Jpn J Genet 34(1):151–161

    Article  Google Scholar 

  • Ng J, Luo L (2004) Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44:779–793. doi:10.1016/j.neuron.2004.11.014

    Article  PubMed  CAS  Google Scholar 

  • Partridge L, Fowler K (1990) Non-mating costs of exposure to males in female Drosophila melanogaster. J Insect Physiol 36:419–425. doi:10.1016/0022-1910(90)90059-o

    Article  Google Scholar 

  • Payne F (1911) Drosophila ampelophila Loew bred in the dark for sixty-nine generations. Biol Bull 21:297–301

    Article  Google Scholar 

  • Protas M, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol 17:452–454. doi:10.1016/j.cub.2007.01.051

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445. doi:10.1093/icb/icm046

    Article  PubMed  CAS  Google Scholar 

  • Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64:39–48. doi:10.1016/0092-8674(91)90207-f

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609. doi:10.1101/gad.1003302

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454:821–847. doi:10.1007/s00424-007-0251-1

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Hasan G, Pikielny CW (1999) Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J Biol Chem 274:10309–10315. doi:10.1074/jbc.274.15.10309

    Article  PubMed  CAS  Google Scholar 

  • Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol 95:1706–1716. doi:10.1152/japplphysiol.00288.2003

    PubMed  CAS  Google Scholar 

  • Williams JA, Su HS, Bernards A, Field J, Sehgal A (2001) A circadian output in Drosophila mediated by Neurofibromatosis-1 and Ras/MAPK. Science 293:2251–2256

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Stock DW, Jeffery WR (2004) Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–847. doi:10.1038/nature02864

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR (2009) Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol 330:200–211. doi:10.1016/j.ydbio.2009.03.003

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa M, Goricki S, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 20:1631–1636. doi:10.1016/j.cub.2010.07.017

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Xiang Y, Yan Z, Han C, Jan LY, Jan YN (2011) Light-induced structural and functional plasticity in Drosophila larval visual system. Science 333:1458–1462

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Udpa N, Gersten M, Visk DW, Bashir A, Xue J, Frazer KA, Posakony JW, Subramaniam S, Bafna V, Haddad GG (2011) Experimental selection of hypoxia-tolerant Drosophila melanogaster. Proc Natl Acad Sci USA 108:2349–2354. doi:10.1073/pnas.1010643108

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, DeLuca HF (2012) Vitamin D 25-hydroxylase – four decades of searching, are we there yet? Arch Biochem Biophys. doi:10.1016/j.abb.2012.01.013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Fuse, N., Kitamura, T., Haramura, T., Arikawa, K., Imafuku, M. (2014). Genome Features of Dark-fly. In: Evolution in the Dark. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54147-9_4

Download citation

Publish with us

Policies and ethics