Skip to main content

The Application of Satellite Remote Sensing for Classifying Forest Degradation and Deriving Above-Ground Biomass Estimates

  • Chapter
  • First Online:
Co-benefits of Sustainable Forestry

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 952 Accesses

Abstract

Forests are defined as areas that are covered with trees taller than 5 m in height and at least 10 % canopy cover, integrating both pristine forests and anthropogenic forest plantations. In the subtropical and tropical zones, a 10–40 % canopy cover defines an open canopy forest, and a 40–100 % canopy cover is classified as a closed canopy forest (FAO 2000a). Pristine forest ecosystems, especially in the tropics, are severely threatened by degradation and deforestation caused by human impact, whereby forest degradation is often a precursor for deforestation (Asner et al. 2005). Forest degradation is characterized by a significant reduction in tree density from closed to open or fragmented forests (Achard et al. 2004; DeFries et al. 2007). Deforestation, on the other hand, is described as the reduction of forest cover to less than 10 % (FAO 2000b; Mayaux et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002a) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Achard F, Stibig H-J, Eva HD, Mayaux P (2002b) Tropical forest cover monitoring in the humid tropics: TREES project. Trop Ecol 43:9–20

    Google Scholar 

  • Achard F, Eva HD, Mayaux P, Stibig H-J, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem Cy 18:GB2008. doi:10.1029/2003GB002142

    Article  Google Scholar 

  • Adams JB, Sabol DE, Kapos V, Almeida Filho R, Roberts DA, Smith MO, Gillespie AR (1995) Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens Environ 52:137–154

    Article  Google Scholar 

  • Apan AA (1997) Land cover mapping for tropical forest rehabilitation planning using remotely sensed data. Int J Remote Sens 8:1029–1049

    Article  Google Scholar 

  • Asner GP (2001) Cloud cover in Landsat observations of the Brazilian Amazon. Int J Remote Sens 22:3855–3862

    Article  Google Scholar 

  • Asner GP (2009) Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett 4(034009):1–11. doi:10.1088/1748-9326/4/3/034009

    Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Article  PubMed  CAS  Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA 104:6550–6555 (1004875107:1–5)

    Google Scholar 

  • Baccini A, Laporte N, Goetz SJ, Sun M, Huang D (2008) A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett (IOP Publishing 3). DOI 10.1088/1748-9326/3/4/045011

    Google Scholar 

  • Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc Natl Acad Sci USA 106:21213–21218

    Article  PubMed  CAS  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134. FAO, Rome

    Google Scholar 

  • Chavez PS (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:459–479

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • DeFries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, de Souza C Jr (2007) Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ Sci Policy 10:385–394

    Article  Google Scholar 

  • FAO (2000a) Global forest resources assessment 2000; Main report. Available from URL: ftp://ftp.fao.org/docrep/fao/003/Y1997E/FRA%202000%20Main%20report.pdf

  • FAO (2000b) On definitions of forest and forest change. FRA working paper 33. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2006) Global forest resources assessment 2005. Progress towards sustainable forest management. FAO Forestry Paper 147. ISBN 92-5-105481-9. FAO, Rome

    Google Scholar 

  • Foody GM, Cutler ME, McMorrow J, Pelz D, Tangki H, Boyd DS, Douglas I (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecol Biogeogr 10:379–387

    Article  Google Scholar 

  • Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–74

    Article  Google Scholar 

  • Fuller DO (2006) Tropical forest monitoring and remote sensing: a new era of transparency in forest governance? Singapore J Trop Geogr 27:15–29

    Article  Google Scholar 

  • FWI/GFW (2002) The state of the forest: Indonesia. Forest Watch Indonesia, Bogor, Indonesia, and Global Forest Watch, Washington, DC

    Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023. doi:10.1088/1748-9326/2/4/045023

    Article  Google Scholar 

  • Gobilik J, Ong RC, Suparlan S, Lagan P (2010) Timber yield from second entry logging in the lowland mixed dipterocarp forest of Deramakot, Sabah. Malaysian Forester 73:1–14

    Google Scholar 

  • Gu D, Gillespie A (1998) Topographic normalization of Landsat TM images of forest based on subpixel sun–canopy–sensor geometry. Remote Sens Environ 64:166–175

    Article  Google Scholar 

  • Holdsworth AR, Uhl C (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol Appl 7:713–725

    Article  Google Scholar 

  • Imai N, Samejima H, Langner A, Ong RC, Kita S, Titin J, Chung AYC, Lagan P, Lee YF, Kitayama K (2009) Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration. PLoS One 4:1–7

    Article  Google Scholar 

  • Imai N, Kitayama K, Titin J (2010) Distribution of phosphorus in an above-to-below-ground profile in a Bornean tropical rain forest. J Trop Ecol 26:627–636

    Article  Google Scholar 

  • Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biol 13:2329–2340

    Article  Google Scholar 

  • Langner A, Samejima H, Ong RC, Titin J, Kitayama K. Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: a case study in Sabah, Malaysian Borneo. Int J Appl Earth Observ Geoinform 18: 305–312

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New York

    Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26:2509–2525

    Article  Google Scholar 

  • Lu D, Moran E, Batistella M (2003) Linear mixture model applied to Amazonian vegetation classification. Remote Sens Environ 87:456–469

    Article  Google Scholar 

  • Marcoux A (2000) Population and deforestation. In: Population and the environment: a review and concepts for population programmes. Part III: Population and deforestation. FAO, Rome

    Google Scholar 

  • Mayaux P, Achard F, Malingreau J-P (1998) Global tropical forest area measurements derived from coarse resolution maps at a global level: a comparison with other approaches. Environ Conserv 25:37–52

    Article  Google Scholar 

  • Mayaux P, Holmgren P, Achard F, Eva H, Stiebig H-J, Branthomme A (2005) Tropical forest cover change in the 1990s and options for future monitoring. Phil Trans Roy Soc Lond B 360:373–384

    Article  Google Scholar 

  • Miettinen J, Shi C, Liew SC (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biol. doi:10.1111/j.1365-2486.2011.02398.x

    Google Scholar 

  • Podest E, Saatchi S (2002) Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation. Int J Remote Sens 23:1487–1506

    Article  Google Scholar 

  • Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C (2003) A review of remote sensing technology in support of the Kyoto Protocol. Environ Sci Policy 6:441–455

    Article  Google Scholar 

  • Saatchi SS, Houghton RA, Dos Santos Alvala RC, Soares JV, Yu Y (2007) Distribution of aboveground live biomass in the Amazon Basin. Global Change Biol 13:816–837

    Article  Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest aboveground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

    Article  Google Scholar 

  • Tangki H, Chappell NA (2008) Biomass variation across selectively logged forest within a 225-km2 region of Borneo and its prediction by Landsat TM. Forest Ecol Manag 256:1960–1970

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS (2004) Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rain forests. Remote Sens Environ 90:23–43

    Article  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  Google Scholar 

  • Weishampel JF, Godin JR, Henebry GM (2001) Pantropical dynamics of ‘intact’ rain forest canopy texture. Global Ecol Biogeogr 10:389–397

    Article  Google Scholar 

  • Whitmore TC (1985) Tropical rain forests of the Far East. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Langner, A., Titin, J., Kitayama, K. (2012). The Application of Satellite Remote Sensing for Classifying Forest Degradation and Deriving Above-Ground Biomass Estimates. In: Kitayama, K. (eds) Co-benefits of Sustainable Forestry. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54141-7_2

Download citation

Publish with us

Policies and ethics