π-Stacking on Density Functional Theory: A Review

  • Takao Tsuneda
  • Tetsuya Taketsugu


In line with increasing use of density functional theory (DFT) in quantum chemistry, it is presently employed in more than 80 % of van der Waals calculations. Since most van der Waals calculations target at large-scale systems such as biomolecules and nanomaterials, it is natural to use DFT having features of both high speed and high accuracy. Nevertheless, it has been reported that DFT provides poor van der Waals bonds for many years [1]. For example, until recently, no exchange-correlation functional gives meaningful potential energy curves for the van der Waals bonds of rare gas dimers in Kohn–Sham calculations [1]. The main cause for the poor DFT results of van der Waals bonds is the neglect of van der Waals interactions in conventional exchange-correlation functionals [2].


Density Functional Theory Density Functional Theory Calculation Potential Energy Curve Dispersion Interaction Density Functional Theory Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Grant: 23225001 and 24350005).


  1. 1.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010CrossRefGoogle Scholar
  2. 2.
    Tsuneda T, Sato T (2009) Butsuri 64:291Google Scholar
  3. 3.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  4. 4.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133Google Scholar
  5. 5.
    London FW (1930) Z Phys 63:245CrossRefGoogle Scholar
  6. 6.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  7. 7.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  8. 8.
    Colle R, Salvetti O (1975) Theor Chim Acta 37:329CrossRefGoogle Scholar
  9. 9.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  10. 10.
    Tsuneda T, Suzumura T, Hirao K (1999) J Chem Phys 110:10664CrossRefGoogle Scholar
  11. 11.
    Grimme S (2008) Angew Chem Int Ed 47:3430CrossRefGoogle Scholar
  12. 12.
    Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525CrossRefGoogle Scholar
  13. 13.
    Hunter CA (1993) Angew Chem 105:1653Google Scholar
  14. 14.
    Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307CrossRefGoogle Scholar
  15. 15.
    Dillon AC, Heben MJ (2001) Appl Phys A 72:133CrossRefGoogle Scholar
  16. 16.
    Dresselhaus MS, Dresselhaus G, Avouris P (2000) Carbon nanotubes: synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  17. 17.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114CrossRefGoogle Scholar
  18. 18.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027CrossRefGoogle Scholar
  19. 19.
    Lerman LS (1961) J Mol Biol 3:18CrossRefGoogle Scholar
  20. 20.
    Zimm BH (1960) J Chem Phys 33:1349CrossRefGoogle Scholar
  21. 21.
    Burley SK, Patsko GA (1985) Science 229:23CrossRefGoogle Scholar
  22. 22.
    Hunter CA, Singh J, Thornton JM (1991) J Mol Biol 218:837CrossRefGoogle Scholar
  23. 23.
    Quiocho FA, Vyas NK (1984) Nature (London) 310:381CrossRefGoogle Scholar
  24. 24.
    Vyas NK, Vyas MN, Quiocho FA (1987) Nature (London) 327:635CrossRefGoogle Scholar
  25. 25.
    Vyas NK, Vyas MN, Quiocho FA (1988) Science 242:1290CrossRefGoogle Scholar
  26. 26.
    Jorgensen WL, Severance DL (1990) J Am Chem Soc 112:4768CrossRefGoogle Scholar
  27. 27.
    Hunter CA (1994) Chem Soc Rev 23:101CrossRefGoogle Scholar
  28. 28.
    Kryger G, Silman I, Sussman JL (1998) J Physiol (Paris) 92:191CrossRefGoogle Scholar
  29. 29.
    Cerny J, Kabelac M, Hobza P (2008) J Am Chem Soc 130:16055CrossRefGoogle Scholar
  30. 30.
    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning PHJ (2005) Chem Rev 105:1491CrossRefGoogle Scholar
  31. 31.
    Wheeler SE, Houk KN (2008) J Am Chem Soc 130:10854CrossRefGoogle Scholar
  32. 32.
    Singh RK, Tsuneda T (2013) J Comput Chem 34:379Google Scholar
  33. 33.
    Becke AD, Johnson ER (2005a) J Chem Phys 123:154101CrossRefGoogle Scholar
  34. 34.
    Becke AD, Johnson ER (2005b) J Chem Phys 125:154105Google Scholar
  35. 35.
    McWeeny R (1992) Methods of molecular quantum mechanics, 2nd edn. Academic Press, San DiegoGoogle Scholar
  36. 36.
    Williams HL, Chabalowski CF (2001) J Phys Chem A 105:646CrossRefGoogle Scholar
  37. 37.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397CrossRefGoogle Scholar
  38. 38.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  39. 39.
    Langreth DC, Perdew JP (1975) Solid State Comm 17:1425CrossRefGoogle Scholar
  40. 40.
    Zhu W, Toulouse J, Savin A, Angyan JG (2009) J Chem Phys 131:174105CrossRefGoogle Scholar
  41. 41.
    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102CrossRefGoogle Scholar
  42. 42.
    Dobson JF, Dinte BP (1996) Phys Rev Lett 76:1780CrossRefGoogle Scholar
  43. 43.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401CrossRefGoogle Scholar
  44. 44.
    Vydrov OA, van Voorhis T (2009) J Chem Phys 130:104105CrossRefGoogle Scholar
  45. 45.
    Sato T, Nakai H (2009) J Chem Phys 131:224104CrossRefGoogle Scholar
  46. 46.
    Brooks RE, Bruccoleri BR, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187CrossRefGoogle Scholar
  47. 47.
    Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TEI, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Comm 91:1CrossRefGoogle Scholar
  48. 48.
    Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2008a) Theor Chem Acc 120:215CrossRefGoogle Scholar
  50. 50.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  51. 51.
    Casimir H, Polder D (1948) Phys Rev 73:360CrossRefGoogle Scholar
  52. 52.
    Starkschall G, Gordon R (1972) J Chem Phys 56:2801CrossRefGoogle Scholar
  53. 53.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540CrossRefGoogle Scholar
  54. 54.
    Savin A (1996) In: Seminario JJ (ed) Recent developments and applications of modern density functional theory. Elsevier, AmsterdamGoogle Scholar
  55. 55.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  56. 56.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425CrossRefGoogle Scholar
  57. 57.
    Song J-W, Tsuneda T, Sato T, Hirao K (2010) Org Lett 12:1440CrossRefGoogle Scholar
  58. 58.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111(1)CrossRefGoogle Scholar
  59. 59.
    Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, et al (2010) J Chem Phys 132:094107CrossRefGoogle Scholar
  60. 60.
    Tsuneda T, Song J-W, Suzuki S, Hirao K (2010) J Chem Phys 133:174101CrossRefGoogle Scholar
  61. 61.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 91:51CrossRefGoogle Scholar
  62. 62.
    Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106(1)Google Scholar
  63. 63.
    Chai J-D, Head-Gordon M (2008a) J Chem Phys 128:084106(1)CrossRefGoogle Scholar
  64. 64.
    Giese TJ, Audette VM, York DM (2003) J Chem Phys 119:2618CrossRefGoogle Scholar
  65. 65.
    Sato T, Tsuneda T, Hirao K (2007) J Chem Phys 126:234114CrossRefGoogle Scholar
  66. 66.
    Chai J-D, Head-Gordon M (2008b) Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  67. 67.
    Chai J-D, Head-Gordon M (2009) J Chem Phys 131:174105CrossRefGoogle Scholar
  68. 68.
    Ma SK, Brueckner KA (1968) Phys Rev 165:18CrossRefGoogle Scholar
  69. 69.
    Dreizler RM, Gross EKU (1990) Density-functional theory an approach to the quantum many-body problem. Springer, BerlinCrossRefGoogle Scholar
  70. 70.
    Meijer EJ, Sprik M (1996) J Chem Phys 105:8684CrossRefGoogle Scholar
  71. 71.
    Tsuzuki S, Lüthi H (2001) J Chem Phys 114:3949CrossRefGoogle Scholar
  72. 72.
    Ehrlich S, Moellmann J, Grimme S (2012) Acc Chem Res. doi:10.1021/ar3000844Google Scholar
  73. 73.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985CrossRefGoogle Scholar
  74. 74.
    Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Chem Rev 110:5023CrossRefGoogle Scholar
  75. 75.
    Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Phys Rev Lett 103:263201CrossRefGoogle Scholar
  76. 76.
    Vydrov OA, Van Voorhis T (2010) J Chem Phys 132:164113Google Scholar
  77. 77.
    Tournas F, Latil S, Heggie MI, Charlier J-C (2005) Phys Rev B 72:075431CrossRefGoogle Scholar
  78. 78.
    Park KA, Lee SM, Lee SH, Lee YH (2007) J Phys Chem C 111:1620CrossRefGoogle Scholar
  79. 79.
    Woods LM, Badescu SC, Reinecke TL (2007) Phys Rev B 75:155415CrossRefGoogle Scholar
  80. 80.
    Zhao J, Buldum A, Han J, Lu JP (2002) Nanotechnologoy 13:195CrossRefGoogle Scholar
  81. 81.
    Tada K, Furuya S, Watanabe K (2001) Phys Rev B 63:155405CrossRefGoogle Scholar
  82. 82.
    Grimme M, Steinmetz S, Korth M (2007) J Org Chem 72:2118CrossRefGoogle Scholar
  83. 83.
    Mackie ID, DiLabio GA (2008) J Phys Chem A 112:10968CrossRefGoogle Scholar
  84. 84.
    Björk J, Hanke F, Palma C-A, Samori P, Cecchini M, Persson M (2010) J Phys Chem Lett 1:3407CrossRefGoogle Scholar
  85. 85.
    Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Phys Rev B 76:033401CrossRefGoogle Scholar
  86. 86.
    Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharrya D (2012) J Phys Chem C 116:4374CrossRefGoogle Scholar
  87. 87.
    Zhang Z, Huang H, Yang X, Zang L (2011) J Phys Chem Lett 2:2897CrossRefGoogle Scholar
  88. 88.
    Gao H, Kong Y (2004) Annu Rev Mater Res 34:123CrossRefGoogle Scholar
  89. 89.
    Morgado C, Vincent MA, Hillier IH, Shan X (2007) Phys Chem Chem Phys 9:448CrossRefGoogle Scholar
  90. 90.
    Cooper VR, Thonhauser T, Puzder A, Schröder E, Lundqvist BI, Langreth DC (2007) J Am Chem Soc 130:1304CrossRefGoogle Scholar
  91. 91.
    Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730CrossRefGoogle Scholar
  92. 92.
    Lange AW, Rohrdanz MA, Herbert JM (2008) J Phys Chem B Lett 112:6304CrossRefGoogle Scholar
  93. 93.
    Santoro F, Barone V, Improta R (2009) J Am Chem Soc 131:15232CrossRefGoogle Scholar
  94. 94.
    Chakrabarti S, Ruud K (2009) J Phys Chem A 113:5485CrossRefGoogle Scholar
  95. 95.
    Zhao Y, Truhlar DG (2008b) Phys Chem Chem Phys 10:2813CrossRefGoogle Scholar
  96. 96.
    Sumpter BG, Meunier V, Valeev EF, Lampkins AJ, Li H, Castellano RK (2007) J Phys Chem C 111:18912CrossRefGoogle Scholar
  97. 97.
    Wong BM, Ye SH (2011) Phys Rev B 84:075115CrossRefGoogle Scholar
  98. 98.
    Choudhury SR, Gamez P, Robertazzi A, Chen C-Y, Lee HM, Mukhopadhyay S (2008) Cryst Growth Des 8:3773CrossRefGoogle Scholar

Copyright information

© Springer 2014

Authors and Affiliations

  1. 1.Fuel Cell Nanomaterials CenterUniversity of YamanashiKofuJapan
  2. 2.Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations