Cyclophane-Based π-Stacked Polymers

  • Yasuhiro Morisaki
  • Yoshiki Chujo


This chapter focused on the synthesis and fundamental properties of π-stacked polymers, which consist of the stacked π-electron systems created by the [m.n]cyclophane, in particular [2.2]paracyclophane, in the polymer main chain. Our recent works in this field are mainly focused on due to the limited examples, and their characteristic features are summarized. Incorporation of the [2.2]paracyclophane skeleton into a π-conjugated polymer backbone leads to a π-stacked structure. Pseudo-para-, pseudo-ortho-, and pseudo-geminal-disubstituted [2.2]paracyclophanes allow the construction of various π-stacked conformations such as straight, zigzag, and fully stacked structures. Optically active π-stacked polymers comprising the planar chiral pseudo-ortho-disubstituted [2.2]paracyclophanes open a new frontier in chiral polymer chemistry. Common π-conjugated polymers have a set of HOMO (valence band) and LUMO (conduction band) energy bandgaps, whereas in the π-stacked polymers each π-electron system has its own HOMO–LUMO energy bandgap. Various aromatic groups can be incorporated into polymers; therefore, energy and charge transfer through the polymer chain can be controlled by appropriate tuning of the bandgaps and energy levels of the stacked π-electron system. We hope that this new class of π-stacked polymers can make a fundamental contribution to the field of molecular electronics in the form of single molecular wires.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Fluorescence Resonance Energy Transfer Photoluminescence Spectrum Polymer Main Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our works introduced herein are mainly supported by Grant-in-Aid for Young Scientists (B) (No. 16750096) and Young Scientists (A) (No. 21685012 and No. 24685018) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Brown CJ, Farthing AC (1949) Nature 164:915Google Scholar
  2. 2.
    Cram DJ, Steinberg H (1951) J Am Chem Soc 73:5691Google Scholar
  3. 3.
    Vögtle F (1993) Cyclophane chemistry: synthesis, structures and reactions. Wiley, ChichesterGoogle Scholar
  4. 4.
    Gleiter R, Hopf H (eds) (2004) Modern cyclophane chemistry. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Morisaki Y, Chujo Y (2006) Angew Chem Int Ed 45:6430Google Scholar
  6. 6.
    Morisaki Y, Chujo Y (2008) Prog Polym Sci 33:346Google Scholar
  7. 7.
    Hopf H (2008) Angew Chem Int Ed 47:9808Google Scholar
  8. 8.
    Morisaki Y, Chujo Y (2008) Bull Chem Soc Jpn 82:1070Google Scholar
  9. 9.
    Morisaki Y, Chujo Y (2011) Polym Chem 2:1249Google Scholar
  10. 10.
    Morisaki Y, Chujo Y (2012) Chem Lett 41:840Google Scholar
  11. 11.
    Mizogami S, Yoshimura S (1985) J Chem Soc Chem Commun 427Google Scholar
  12. 12.
    Mizogami S, Yoshimura S (1985) J Chem Soc Chem Commun 1736Google Scholar
  13. 13.
    Guyard L, Audebert P (2001) Electrochem Commun 3:164Google Scholar
  14. 14.
    Guyard L, Audebert P, Dolbier WR Jr, Duan JX (2002) J Electroanal Chem 537:189Google Scholar
  15. 15.
    Salhi F, Lee B, Metz C, Bottomley LA, Collard DM (2002) Org Lett 4:3195Google Scholar
  16. 16.
    Salhi F, Collard DM (2003) Adv Mater 15:81Google Scholar
  17. 17.
    Diederich F, Stang PJ (eds) (1998) Metal-catalyzed cross-coupling reactions. VCH, WeinheimGoogle Scholar
  18. 18.
    Miyaura N (ed) (2002) Cross-coupling reaction: a practical guide. Springer, BerlinGoogle Scholar
  19. 19.
    Negishi E (ed) (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, New YorkGoogle Scholar
  20. 20.
    de Meijere A, Diedrich F (eds) (2004) Metal-catalyzed cross-coupling reactions. Wiely-VCH, WeinheimGoogle Scholar
  21. 21.
    Tohda Y, Sonogashira K, Hagihara N (1977) Synthesis 777Google Scholar
  22. 22.
    Sonogashira K (2002) In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis. Wiley, New York, pp 493–529Google Scholar
  23. 23.
    Morisaki Y, Chujo Y (2002) Macromolecules 35:587Google Scholar
  24. 24.
    Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44:581Google Scholar
  25. 25.
    Heck RF, Nolley JP Jr (1972) J Org Chem 37:2320Google Scholar
  26. 26.
    Morisaki Y, Chujo Y (2004) Macromolecules 37:4099Google Scholar
  27. 27.
    Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3437Google Scholar
  28. 28.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457Google Scholar
  29. 29.
    Morisaki Y, Chujo Y (2005) Bull Chem Soc Jpn 78:288Google Scholar
  30. 30.
    Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y (2012) Chem Eur J 18:4216Google Scholar
  31. 31.
    Bubeck C (1998) In: Müllen K, Wegner G (eds) Electronic materials: the oligomer approach, Wiley-VCH, Weinheim pp 449–478Google Scholar
  32. 32.
    Meier H, Stalmach U, Kolshorn H (1997) Acta Polym 48:379Google Scholar
  33. 33.
    Luo Y, Norman P, Ruud K, Agren H (1998) Chem Phys Lett 285:160Google Scholar
  34. 34.
    Dembinski R, Bartik T, Bartik B, Jaeger M, Gladysz JA (2000) J Am Chem Soc 122:810Google Scholar
  35. 35.
    Gibtner T, Hampel F, Gisselbrecht JP, Hirsch A (2002) Chem Eur J 8:408–432Google Scholar
  36. 36.
    Meier H (2006) Carbon-rich compounds. In: Haley MM, Tykwinski RR (eds) Molecules to materials. Wiely-VCH, Weinheim, pp 476–528Google Scholar
  37. 37.
    Nakano T (2010) Polym J 42:103Google Scholar
  38. 38.
    Nakano T, Takewaki K, Yade T, Okamoto Y (2001) J Am Chem Soc 123:9182Google Scholar
  39. 39.
    Nakano T, Yade T (2003) J Am Chem Soc 125:15474Google Scholar
  40. 40.
    Nakano T, Yade T, Yokoyama M, Nagayama N (2004) Chem Lett 33:296Google Scholar
  41. 41.
    Nakano T, Yade T, Fukuda Y, Yamaguchi T, Okumura S (2005) Macromolecules 38:8140Google Scholar
  42. 42.
    Yade T, Nakano T (2006) J Polym Sci A Polym Chem 44:561Google Scholar
  43. 43.
    Nakano T, Yade T (2008) Chem Lett 37:258–259Google Scholar
  44. 44.
    Nakano T, Tanikawa M, Nakagawa O, Yade T, Sakamoto T (2009) J Polym Sci A Polym Chem 47:239Google Scholar
  45. 45.
    García Martínez A, Osío Barcina J, de Fresno CA, Schlüter AD, Frahn J (1999) Adv Mater 11:27Google Scholar
  46. 46.
    Caraballo-Martínez N, Colorado Heras MR, Mba Blázquez M, Osío Barcina J, García Martínez A, Torres Salvador MR (2007) Org Lett 9:2943Google Scholar
  47. 47.
    Osío Barcina J, Colorado Heras MR, Mba M, Gómez Aspe R, Herrero-García N (2009) J Org Chem 74:7148Google Scholar
  48. 48.
    Bartholomew GP, Bazan GC (2001) Acc Chem Res 34:30Google Scholar
  49. 49.
    Oldham WJ Jr, Miao YJ, Lachicotte RJ, Bazan GC (1998) J Am Chem Soc 120:419Google Scholar
  50. 50.
    Bazan GC, Oldham WJ Jr, Lachicotte RJ, Tretiak S, Chernyak V, Mukamel S (1998) J Am Chem Soc 120:9188Google Scholar
  51. 51.
    Wang S, Bazan GC, Tretiak S, Mukamel S (2000) J Am Chem Soc 122:1289Google Scholar
  52. 52.
    Bartholomew GP, Bazan GC (2002) J Am Chem Soc 124:5183Google Scholar
  53. 53.
    Bartholomew GP, Bazan GC (2002) Synthesis 1245Google Scholar
  54. 54.
    Ruseckas A, Namdas EB, Lee JY, Mukamel S, Wang S, Bazan GC, Sundström V (2003) J Phys Chem A 107:8029–8034Google Scholar
  55. 55.
    Bazan GC (2007) J Org Chem 72:8645Google Scholar
  56. 56.
    Förster T (1946) Naturwissenschaften 33:166Google Scholar
  57. 57.
    van der Laan GP, de Haas MP, Hummel A, Frey H, Sheiko S, Möller M (1994) Macromolecules 27:1897Google Scholar
  58. 58.
    Hoofman RJOM, de Haas MP, Siebbeles LDA, Warman JM (1998) Nature 392:54Google Scholar
  59. 59.
    Warman JM, Gelinck GH, de Haas MP (2002) J Phys Condens Matter 14:9935Google Scholar
  60. 60.
    Grozema FC, Siebbeles LDA, Warman JM, Seki S, Tagawa S, Scherf U (2002) Adv Mater 14:228Google Scholar
  61. 61.
    Kocherzhenko AA, Patwardhan S, Grozema FC, Anderson HL, Siebbeles LDA (2009) J Am Chem Soc 131:5522Google Scholar
  62. 62.
    Pingel P, Zen A, Abellón RD, Grozema FC, Siebbeles LDA, Neher D (2010) Adv Funct Mater 20:2286Google Scholar
  63. 63.
    Saeki A, Tsuji M, Seki S (2011) Adv Energy Mater 1:661Google Scholar
  64. 64.
    Saeki A, Seki S, Shimizu Y, Yamao T, Hotta S (2010) J Chem Phys 132:134509–134511Google Scholar
  65. 65.
    Prasanthkumar S, Saeki A, Seki S, Ajayaghosh A (2010) J Am Chem Soc 132:8866Google Scholar
  66. 66.
    Yamamoto Y, Zhang G, Jin W, Fukushima T, Ishii N, Saeki A, Seki S, Tagawa S, Minari T, Tsukagoshi K, Aida T (2009) Proc Natl Acad Sci 106:21051Google Scholar
  67. 67.
    Saeki A, Seki S, Takenobu T, Iwasa Y, Tagawa S (2008) Adv Mater 20:920Google Scholar
  68. 68.
    Saeki A, Fukumatsu T, Seki S (2011) Macromolecules 44:3416Google Scholar
  69. 69.
    Fratiloiu S, Grozema FC, Koizumi Y, Seki S, Saeki A, Tagawa S, Dudek SP, Siebbeles LDA (2006) J Phys Chem B 110:5984Google Scholar
  70. 70.
    Feng X, Marcon V, Pisulal W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Nat Mater 8:421Google Scholar
  71. 71.
    Morisaki Y, Lin L, Chujo Y (2009) Chem Lett 38:734Google Scholar
  72. 72.
    Morisaki Y, Lin L, Chujo Y (2009) J Polym Sci A Polym Chem 47:5979Google Scholar
  73. 73.
    Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB (1993) Nature 365:628Google Scholar
  74. 74.
    Lin L, Morisaki Y, Chujo Y (2010) Int J Polym Sci 2010:908128Google Scholar
  75. 75.
    Walker SD, Barder TE, Martinelli JR, Buchwald SL (2004) Angew Chem Int Ed 43:1871Google Scholar
  76. 76.
    Reich HJ, Cram DJ (1969) J Am Chem Soc 91:3517Google Scholar
  77. 77.
    Bondarenko L, Dix I, Hinrichs H, Hopf H (2004) Synthesis 16:2751Google Scholar
  78. 78.
    Morisaki Y, Wada N, Arita M, Chujo Y (2009) Polym Bull 62:305Google Scholar
  79. 79.
    Cram DJ, Laainger NL (1955) J Am Chem Soc 77:6289Google Scholar
  80. 80.
    Rozenberg V, Sergeeva E, Hopf H (2004) In: Gleiter R, Hopf H (eds) Modern cyclophane chemistry. Wiley-VCH, Weinheim, pp 435–462Google Scholar
  81. 81.
    Rowlands GJ (2008) Org Biomol Chem 6:1527Google Scholar
  82. 82.
    Gibson SE, Knight JD (2003) Org Biomol Chem 1:1256Google Scholar
  83. 83.
    Aly AA, Brown AB (2009) Tetrahedron 65:8055Google Scholar
  84. 84.
    Paradies J (2011) Synthesis 3749Google Scholar
  85. 85.
    Pye PJ, Rossen K, Reamer RA, Tsou NN, Volante RP, Reider PJ (1997) J Am Chem Soc 119:6207Google Scholar
  86. 86.
    Rossen K, Pye PJ, Maliakal A, Volante RP (1997) J Org Chem 62:6462Google Scholar
  87. 87.
    Zhuravsky R, Starikova Z, Vorontsov E, Rozenberg V (2008) Tetrahedron Asym 19:216Google Scholar
  88. 88.
    Jiang B, Zhao XL (2004) Tetrahedron Asym 15:1141Google Scholar
  89. 89.
    Jones PG, Hillmer J, Hopf H (2003) Acta Crystallogr E59:o24Google Scholar
  90. 90.
    Pamperin D, Hopf H, Syldatk C, Pietzsch M (1997) Tetrahedron Asym 8:319Google Scholar
  91. 91.
    Pamperin D, Ohse B, Hopf H, Pietzsch M (1998) J Mol Cat B Enzym 5:317Google Scholar
  92. 92.
    Braddock DC, MacGilp ID, Perry BG (2002) J Org Chem 67:8679Google Scholar
  93. 93.
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012) Chem Lett 41:990Google Scholar
  94. 94.
    Hitchcock PB, Rowlands GJ, Parmar R (2005) Chem Commun 4219Google Scholar
  95. 95.
    Parmar R, Coles MP, Hitchcock PB, Rowlands GJ (2010) Synthesis 4177Google Scholar
  96. 96.
    Lockard JP, Schroeck CW, Johnson CR (1973) Synthesis 485Google Scholar
  97. 97.
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012) Polym Chem 3:2727Google Scholar
  98. 98.
    Satrijio A, Meskers SCJ, Swager TM (2006) J Am Chem Soc 128:9030Google Scholar
  99. 99.
    Wilson JN, Steffen W, McKenzie TG, Lieser G, Oda M, Neher D, Bunz UHF (2002) J Am Chem Soc 124:6830Google Scholar
  100. 100.
    Oda M, Nothofer HG, Lieser G, Scherf U, Meskers SCJ, Neher D (2000) Adv Mater 12:362Google Scholar
  101. 101.
    Oda M, Nothofer HG, Scherf U, Šunjic V, Richter D, Regenstein W, Meskers SCJ, Neher D (2002) Macromolecule 35:6792Google Scholar
  102. 102.
    Yu JM, Sakamoto T, Watanabe K, Furumi S, Tamaoki N, Chen Y, Nakano T (2011) Chem Commun 47:3799Google Scholar
  103. 103.
    Watanabe K, Sakamoto T, Taguchi M, Fujiki M, Nakano T (2011) Chem Commun 47:10996Google Scholar
  104. 104.
    Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW (1997) J Am Chem Soc 119:9909Google Scholar
  105. 105.
    Langeveld-Voss BMW, Janssen RA, Christiaans MPT, Meskers SCJ, Dekkers HPJM, Meijer EW (1996) J Am Chem Soc 118:4908Google Scholar
  106. 106.
    Fukao S, Fujiki M (2009) Macromolecules 42:8062Google Scholar
  107. 107.
    Goto H, Akagi K (2005) Angew Chem Int Ed 44:4322Google Scholar
  108. 108.
    Hayasaka H, Miyashita T, Tamura K, Akagi K (2010) Adv Funct Mater 20:1243Google Scholar
  109. 109.
    Nakano Y, Liu Y, Fujiki M (2010) Polym Chem 1:460Google Scholar
  110. 110.
    Kawagoe Y, Fujiki M, Nakano Y (2010) New J Chem 34:637Google Scholar
  111. 111.
    Jagtap SP, Collard DM (2010) J Am Chem Soc 132:12208Google Scholar
  112. 112.
    Jagtap SP, Collard DM (2012) Polym Chem 3:463Google Scholar
  113. 113.
    Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Nature 402:276Google Scholar
  114. 114.
    Cheetham AK, Férey G, Loiseau T (1999) Angew Chem Int Ed 38:3268Google Scholar
  115. 115.
    Eddaoudi M, Kim J, Rosi N, Vodak D, O'Keeffe M, Yaghi OM (2002) Science 295:469Google Scholar
  116. 116.
    Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705Google Scholar
  117. 117.
    Matzger A, O'Keeffe M, Yaghi OM (2004) Nature 427:523Google Scholar
  118. 118.
    Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334Google Scholar
  119. 119.
    Kitagawa S, Noro S, Nakamura T (2006) Chem Commun 701Google Scholar
  120. 120.
    Kitagawa S, Matsuda R (2007) Coord Chem Rev 251:2490Google Scholar
  121. 121.
    Maji TK, Kitagawa S (2007) Pure Appl Chem 79:2155Google Scholar
  122. 122.
    Férey G (2008) Chem Soc Rev 37:191Google Scholar
  123. 123.
    Uemura T, Yanai N, Kitagawa S (2009) Chem Soc Rev 38:1228Google Scholar
  124. 124.
    Jiang JX, Cooper AI (2010) Top Curr Chem 293:1Google Scholar
  125. 125.
    Thomas A (2010) Angew Chem Int Ed 49:8328Google Scholar
  126. 126.
    Thomas A, Kuhn P, Weber J, Titirici MM, Antonietti M (2009) Macromol Rapid Commun 30:221Google Scholar
  127. 127.
    McKeown NB, Budd PM (2006) Chem Soc Rev 35:675Google Scholar
  128. 128.
    Cooper AI (2009) Adv Mater 21:1291Google Scholar
  129. 129.
    Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dikckinson C, Ganin AY, Rosseinsky MJ, Khimyak YJ, Cooper AI (2007) Angew Chem Int Ed 46:8574Google Scholar
  130. 130.
    Jiang JX, Su F, Trewin A, Wood CD, Niu H, Jones TA, Khimyak YZ, Cooper AI (2008) J Am Chem Soc 130:7710Google Scholar
  131. 131.
    Jiang JX, Su F, Niu H, Wood CD, Campbell NL, Khimyak YZ, Cooper AI (2008) Chem Commun 486Google Scholar
  132. 132.
    Dawson R, Su F, Niu H, Wood CD, Jones JTA, Khimyak YZ, Cooper AI (2008) Macromolecules 41:1591Google Scholar
  133. 133.
    Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F (2009) Angew Chem Int Ed 48:6909Google Scholar
  134. 134.
    Chen L, Honsho Y, Seki S, Jiang DL (2010) J Am Chem Soc 132:6742Google Scholar
  135. 135.
    Jiang JX, Laybourn A, Clowes R, Khimyak YZ, Bacsa J, Higgins SJ, Adams DJ, Cooper AI (2010) Macromolecules 43:7577Google Scholar
  136. 136.
    Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2010) Macromolecules 43:8524Google Scholar
  137. 137.
    Jiang JX, Wang C, Laybourn A, Hassell T, Clowes R, Khimyak YZ, Xiao J, Higgins SJ, Adams DJ, Cooper AI (2011) Angew Chem Int Ed 50:1072Google Scholar
  138. 138.
    Morisaki Y, Gon M, Tsuji Y, Kajiwara Y, Chujo Y (2011) Tetrahedron Lett 52:5504Google Scholar
  139. 139.
    Morisaki Y, Gon M, Tsuji Y, Kajiwara Y, Chujo Y (2012) Macromol Chem Phys 213:572Google Scholar
  140. 140.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603Google Scholar

Copyright information

© Springer 2014

Authors and Affiliations

  1. 1.Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations