Synthesis and Properties of π-Stacked Vinyl Polymers

  • Tamaki Nakano


Synthesis, structure, and function of poly(dibenzofulvene) and its derivatives and analogues are π-stacked vinyl polymers. π-Stacked polymers indicate characteristic properties such as remarkable hypochromism in absorbance spectra and upfield shifts of signals in NMR spectra and also reduced oxidation potential and charge mobility. These properties are based on strong interactions between stacked aromatic groups that are not seen in isolated molecular systems. As π-stacked polymers can mediate charge mobility, they have a potential in applications for organic electronics. π-Stacked polymers are advantageous over main-chain conjugated polymers and can find wider applications due to the facts that they are colorless and that, in general, they have higher solubility compared with conjugated polymers. We envisage that π-stacked polymers can be excellent complements to main-chain conjugation polymers in practical polymer materials science and, further, that they could exhibit their own characteristic properties that are yet to be explored.


Circular Dichroism Circular Dichroism Spectrum Anionic Polymerization Vinyl Polymer Chiroptical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank all collaborators involved in our research projects described in this chapter. This work was supported by MEXT (Japan) through Grants-in-Aid 25288051 and 25620091, JST ACT-C Project, the Asahi Glass Foundation, and the Sumitomo Foundation.


  1. 1.
    Fegan A, White B, Carlson JCT, Wagner CR (2010) Chem Rev 110:3315Google Scholar
  2. 2.
    Fujita M (1999) Acc Chem Res 32:53Google Scholar
  3. 3.
    Fujita M, Tominaga M, Hori A, Therrien B (2005) Acc Chem Res 38:371Google Scholar
  4. 4.
    Linton B, Hamilton AD (1997) Chem Rev 97:1669Google Scholar
  5. 5.
    Li W-S, Aida T (2009) Chem Rev 109:6047Google Scholar
  6. 6.
    Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Chem Rev 109:6275Google Scholar
  7. 7.
    Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100:853Google Scholar
  8. 8.
    Chakrabarty R, Mukherjee PS, Stang PJ (2011) Chem Rev 111:6810Google Scholar
  9. 9.
    Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Chem Rev 109:6102Google Scholar
  10. 10.
    Ashkin A (1970) Phys Rev Lett 24:156Google Scholar
  11. 11.
    Ashkin A, Dziedic JM (1987) Science 235(4795):1517Google Scholar
  12. 12.
    Neuman KC, Blocka SM (2004) Rev Sci Instrum 75:2787Google Scholar
  13. 13.
    Ferraris J, Cowan DO, Walatka V, Perlstein JH Jr (1973) J Am Chem Soc 95:948Google Scholar
  14. 14.
    Jerome D, Mazaud M, Ribault M, Bechgaard K (1980) J Phys Lett 41:L955Google Scholar
  15. 15.
    Jerome D (2004) Chem Rev 104:5565Google Scholar
  16. 16.
    Kato R (2004) Chem Rev 104:5319Google Scholar
  17. 17.
    Kobayashi A, Fujiwara E, Kobayashi H (2004) Chem Rev 104:5243Google Scholar
  18. 18.
    Ravy S (2004) Chem Rev 104:5609Google Scholar
  19. 19.
    Talham DR (2004) Chem Rev 104:5479Google Scholar
  20. 20.
    Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891Google Scholar
  21. 21.
    Watson JD, Crick FHC (1953) Nature 171:737Google Scholar
  22. 22.
    Nelson JC, Saven JG, Moore JS, Wolynes PG (1997) Science 277:1793Google Scholar
  23. 23.
    Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) Chem Rev 101:3893Google Scholar
  24. 24.
    Lokey RS, Iverson BL (1995) Nature 375:303Google Scholar
  25. 25.
    Nguyen JQ, Iverson BL (1999) J Am Chem Soc 121:2639Google Scholar
  26. 26.
    Wang W, Li L-S, Helms G, Zhou H-H, Li ADQ (2003) J Am Chem Soc 125:1120Google Scholar
  27. 27.
    Li ADQ, Wang W, Wang L-Q (2003) Chem Eur J 9:4594Google Scholar
  28. 28.
    Wang W, Han JJ, Wang L-Q, Li L-S, Shaw WJ, Li ADQ (2003) Nano Lett 3:455Google Scholar
  29. 29.
    Nakano T, Takewaki K, Yade T, Okamoto Y (2001) J Am Chem Soc 123:9182Google Scholar
  30. 30.
    Nakano T, Yade T (2003) J Am Chem Soc 125:15474Google Scholar
  31. 31.
    Nakano T, Yade T, Fukuda Y, Yamaguchi T, Okumura S (2005) Macromolecules 38:8140Google Scholar
  32. 32.
    Nakano T, Nakagawa O, Yade T, Okamoto Y (2003) Macromolecules 36:1433Google Scholar
  33. 33.
    Nakano T, Yade T, Yokoyama M, Nagayama N (2004) Chem Lett 33:296Google Scholar
  34. 34.
    Nakano T, Nakagawa O, Tsuji M, Tanikawa M, Yade T, Okamoto Y (2004) Chem Commun 144Google Scholar
  35. 35.
    Nakano T, Yade T, Ishizawa H, Nakagawa O, Okamoto Y (2002) ACS Polym Prep 43:609Google Scholar
  36. 36.
    Nakano T, Tanikawa M, Nakagawa O, Yade T, Sakamoto T (2009) J Polym Sci Part A Polym Chem 47:239Google Scholar
  37. 37.
    Watanabe K, Sakamoto T, Suzuki M, Fujiki M, Nakano T (2011) Chem Commun 47:10996Google Scholar
  38. 38.
    Nakano T (2010) Polym J 42:103Google Scholar
  39. 39.
    Rathore R, Abdelwahed SH, Guzei IA (2003) J Am Chem Soc 125:8712Google Scholar
  40. 40.
    Stevenson CD, Kiesewetter MK, Reiter RC, Abdelwahed SH, Rathore R (2005) J Am Chem Soc 127:5282Google Scholar
  41. 41.
    Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossman SH, Turro NJ, Barton JK (1993) Science 262:1025Google Scholar
  42. 42.
    Elias B, Shao F, Barton JK (2008) J Am Chem Soc 130:1152Google Scholar
  43. 43.
    Genereux JC, Barton JK (2010) Chem Rev 110:1642Google Scholar
  44. 44.
    Greenhow EJ, McNeil D, White EN (1952) J Chem Soc 1952:986Google Scholar
  45. 45.
    More O’Ferrall RA, Slae S (1969) J Chem Soc Chem Commun 486Google Scholar
  46. 46.
    Wieland H, Probst O (1937) Liebigs Ann Chem 530:274Google Scholar
  47. 47.
    Evans A, George D (1961) J Chem Soc 1961:4653Google Scholar
  48. 48.
    Alwyn G, Evans G, George DB (1962) J Chem Soc 1962:141Google Scholar
  49. 49.
    Yuki H, Hotta J, Okamoto Y, Murahashi S (1967) Bull Chem Soc Jpn 40:2659Google Scholar
  50. 50.
    Richards DH, Scilly NF (1969) J Polym Sci Polym Lett 7:99Google Scholar
  51. 51.
    Dewar MSJ, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902Google Scholar
  52. 52.
    Ueda M, Mano M, Mori H, Ito H (1991) J Polym Sci A Polym Chem 29:1779Google Scholar
  53. 53.
    Ueda M, Takahashi M, Suzuki T (1983) J Polym Sci Polym Phys Ed 20:1139Google Scholar
  54. 54.
    Ueda M, Mori H (1990) J Polym Sci A Polym Chem 28:1779Google Scholar
  55. 55.
    Suenaga J, Sutherlin DM, Stille JK (1984) Macromolecules 27:2913Google Scholar
  56. 56.
    Md. Sheikh RK, Imae I, Tharanikkarusu K, LeStrat VM-J, Kawakami Y (2000) Polym J 32:527Google Scholar
  57. 57.
    Zundel T, Baran J, Mazureki M, Wang J-S, Jerome R, Teyssie P (1998) Macromolecules 31:2724Google Scholar
  58. 58.
    Okamoto Y, Habaue S, Isobe Y, Suito Y (2003) Macromol Symp 195:75Google Scholar
  59. 59.
    Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M (2003) Macromolecules 36:543Google Scholar
  60. 60.
    Matsumoto A, Tanaka T, Tsubouchi T, Tashiro K, Saragai S, Nakamoto S (2002) J Am Chem Soc 124:8891Google Scholar
  61. 61.
    Nakano T, Okamoto Y, Hatada K (1992) J Am Chem Soc 114:1318Google Scholar
  62. 62.
    Nakano, Okamoto Y (2001) Chem Rev 101:4013Google Scholar
  63. 63.
    Okamoto Y, Nakano T (1994) Chem Rev 94:349Google Scholar
  64. 64.
    Matsumoto A, Odani T (2001) Macromol Rapid Commun 22:1195Google Scholar
  65. 65.
    Schmidt GMJ (1971) Pure Appl Chem 27:647Google Scholar
  66. 66.
    Wegner G (1977) Pure Appl Chem 49:443Google Scholar
  67. 67.
    Baessler H (1984) Adv Polym Sci 63:1Google Scholar
  68. 68.
    Enkelmann V (1984) Adv Polym Sci 63:91Google Scholar
  69. 69.
    Tieke B (1985) Adv Polym Sci 71:79Google Scholar
  70. 70.
    Hasegawa M (1995) Adv Phys Org Chem 30:117Google Scholar
  71. 71.
    Farina M (1984) In: Atwood JL, Davis JDE, MacNicol DD (eds) Inclusion compounds, vol 3. Academic, London, p. 297Google Scholar
  72. 72.
    White DM (1960) J Am Chem Soc 82:5678Google Scholar
  73. 73.
    Minagawa M, Yamada H, Yamaguchi K, Yoshii F (1992) Macromolecules 25:503Google Scholar
  74. 74.
    Allcock HR, Ferrar WT (1982) Macromolecules 15:697Google Scholar
  75. 75.
    Allcock HR, Silverberg EN, Dudley GK, Pucher SR (1994) Macromolecules 27:7559Google Scholar
  76. 76.
    Matsumoto A, Ishizu Y, Yokoi K (1998) Macromol Chem Phys 199:2511Google Scholar
  77. 77.
    Zhang X, Hogen-Esch TE (2000) Macromolecules 33:9176Google Scholar
  78. 78.
    Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York, pp 197–216Google Scholar
  79. 79.
    Bouman TD, Hansen AE (1988) Chem Phys Lett 149:510Google Scholar
  80. 80.
    Becke AD (1988) Phys Rev A38:3098Google Scholar
  81. 81.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  82. 82.
    Sekine Y, Brown M, Boekelheide V (1979) J Am Chem Soc 101:3126Google Scholar
  83. 83.
    Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551Google Scholar
  84. 84.
    Halgren TA (1999) J Comput Chem 20:730Google Scholar
  85. 85.
    Sun H (1998) J Phys Chem 102:7338Google Scholar
  86. 86.
    Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440Google Scholar
  87. 87.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684Google Scholar
  88. 88.
    Fletcher R, Reeves CM (1964) Comput J 7:149Google Scholar
  89. 89.
    Tinoco I (1960) J Am Chem Soc 82:4785Google Scholar
  90. 90.
    Rohdes W (1961) J Am Chem Soc 83:3609Google Scholar
  91. 91.
    Ellis JR (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Dekker, New York,  Chapter 13 Google Scholar
  92. 92.
    Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517Google Scholar
  93. 93.
    Horrocks DL, Brown WG (1970) Chem Phys Lett 5:117Google Scholar
  94. 94.
    Matsuda M, Watanabe A (1987) In: Hogen-Esch TE, Smid J (eds) Recent advances in anionic polymerization. Elsevier, New York, p. 73Google Scholar
  95. 95.
    Hirayama F (1965) J Chem Phys 42:3163Google Scholar
  96. 96.
    Strohriegl P, Grazulevicius JV (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, vol 1. Wiley, New York,  Chapter 11 Google Scholar
  97. 97.
    Pearson JM, Stolka M (1981) Poly(N-vinylcarbazole). Gordon and Breach, New York,  Chapter 4 Google Scholar
  98. 98.
    Borsenberger PM, Weiss DS (1993) Organic photoreceptor systems for imaging systems. Dekker, New YorkGoogle Scholar
  99. 99.
    Shirota Y (2000) J Mater Chem 10:1Google Scholar
  100. 100.
    Strohriegl P (2002) Adv Mater 14:1439Google Scholar
  101. 101.
    Gill W (1972) J Appl Phys 43:5033Google Scholar
  102. 102.
    Hoofman RJMO, de Haas MP, Siebbeles LDA, Warman JM (1998) Nature 392:54Google Scholar
  103. 103.
    Grozema FC, Siebbeles LDA, Warman JM, Seki S, Tagawa S, Scherf U (2002) Adv Mater 14:228Google Scholar
  104. 104.
    Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2003) J Phys Chem A 107:5976Google Scholar
  105. 105.
    Forero S, Nguyen PH, Brütting W, Schwoerer M (1999) Phys Chem Chem Phys 1:1769Google Scholar
  106. 106.
    Kepler RG, Zeigler JM, Kurtz SR (1987) Phys Rev B 35:2818Google Scholar
  107. 107.
    Yokoyama M, Akiyama K, Yamamori N, Mikara H, Kusabayashi S (1985) Polym J 17:545Google Scholar
  108. 108.
    Fujino M, Mikawa H, Yokoyama M (1982) Photogr Sci Eng 26:84Google Scholar
  109. 109.
    Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) J Am Chem Soc 120:6165Google Scholar
  110. 110.
    Fink H-W, Schönenberger C (1999) Nature 398:407Google Scholar
  111. 111.
    Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635Google Scholar
  112. 112.
    Braun E, Eichen Y, Sivan U, Ben-Yoseph C (1998) Nature 391:775Google Scholar
  113. 113.
    Debije MG, Milano MT, Benhard WA (1999) Angew Chem Int Ed 38:2752Google Scholar
  114. 114.
    Maiya BG, Ramasarma T (2001) Curr Sci 80:1523Google Scholar
  115. 115.
    Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K-i, Bredas J-L (2006) J Phys Chem B 110:9482Google Scholar
  116. 116.
    Nakano T, Nakagawa O, Tsuji M, Yade T (2003) Polym Prep Jpn 52(2):1272Google Scholar
  117. 117.
    Yade T, Nakano T, Polym J (2006) Sci A Polym Chem 44:561Google Scholar
  118. 118.
    Li G, Nakano T, Tanaka K, Higashimura H (2012) Polym Prep Jpn 61(1):401; 62(2):2752Google Scholar
  119. 119.
    Nakano T, Yade T (2005) Polym Prep Jpn 54(1):224Google Scholar
  120. 120.
    Nakano T, Yade T (2005) Polym Prep Jpn 54(2):2496Google Scholar
  121. 121.
    Winder C, Sariciftci NS (2004) J Mater Chem 14(7):1077Google Scholar
  122. 122.
    Nikolou M, Malliaras GG (2008) Chem Rec 8(1):13Google Scholar
  123. 123.
    Yoshioka Y, Jabbour GE (2007) In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn, vol 2, pp 3/1–3/21Google Scholar
  124. 124.
    Bao Z (2004) Nature Ma 3(3):137Google Scholar
  125. 125.
    Nakano T, Nishii S, Fukuda Y, Yaegashi T, Katsukawa K-i (2006) Polym Prep Jpn 55(1):317Google Scholar
  126. 126.
    Nakano T, Nishii S, Fukuda Y, Fujiki M, Akimoto S, Sato S (2006) Polym Prep Jpn 55(2):2785Google Scholar
  127. 127.
    Sakamoto T, Yade T, Nakano T (2010) Polym Prep Jpn 59(2):3981Google Scholar
  128. 128.
    Crnelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM (2001) Chem Rev 101:4039Google Scholar
  129. 129.
    Nakano T, Okamoto Y (2000) Macromol Rapid Commun 21:603Google Scholar
  130. 130.
    Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) Angew Chem Int Ed 38:3138Google Scholar
  131. 131.
    Rowan AE, Nolte RJM (1998) Angew Chem Int Ed 37:63Google Scholar
  132. 132.
    Gelman SH (1998) Acc Chem Res 31:173Google Scholar
  133. 133.
    Natta G, Pino P, Corradini P, Danusso F, Mantica E, Nazzanti G, Moraglio G (1955) J Am Chem Soc 77:1708Google Scholar
  134. 134.
    Pino P, Lorenzi GPP (1960) J Am Chem Soc 82:4745Google Scholar
  135. 135.
    Pino P, Lorenzi GP, Lardicci L (1960) Chim Ind (Milan) 42:712Google Scholar
  136. 136.
    Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H (1979) J Am Chem Soc 101:4763Google Scholar
  137. 137.
    Mislow K, Bickart P (1976/1977) Isr J Chem 15:1Google Scholar

Copyright information

© Springer 2014

Authors and Affiliations

  1. 1.Section of Catalytic Assemblies, Catalysis Research Center (CRC)Hokkaido UniversitySapporoJapan

Personalised recommendations