Portable Mobile Terminals and Information Appliances



Mobile communication service began in December 1979, in Japan, ahead of the United States and European countries. The automobile telephone service provided by the Nippon Telegraph and Telephone Public Corporation (currently NTT), targeting the 23 wards of Tokyo, was the first service of its kind. The mobile communication service originally adopted was the FDMA system (Note 6.1), an analog system that utilizes the 800 MHz range, but was transformed later to adopt the TDMA system (Note 6.2), a second-generation digital system that can effectively utilize higher frequencies, responding to an increase in the number of subscribers. Today, the TDMA system is giving way to the CDMA system (Note 6.3), a third-generation system that uses higher frequency effectively and enables high speed data transmission.


Mobile Phone Surface Acoustic Wave Magnetic Loss Piezoelectric Element Positive Temperature Coefficient 


  1. 1.
    Sato Y (2001) RF band filter for mobile phones. J Inst Electron Inform Commun Eng 84(11):782–789 (6.1)Google Scholar
  2. 2.
    Yamazaki T et al (1997) IEDM Tech Dig 613 (6.2)Google Scholar
  3. 3.
    Nakamura T et al (1995) Integr Ferroelectr 9:179 (6.2)CrossRefGoogle Scholar
  4. 4.
    Kawashima S et al (2001) Proceedings of Symposia of VLSI Technology and VLSI Circuits C12-3 (6.2)Google Scholar
  5. 5.
    Horii Y et al (2002) IEDM Tech Dig 539 (6.2)Google Scholar
  6. 6.
    Konishi Y (1965) J Inst Telecommun Eng 48:899–908 (6.6)Google Scholar
  7. 7.
    Hashimoto T (1977) Microwave ferrite and application technologies. Sogo Denshi Shuppan, Tokyo, pp 74–109 (6.6)Google Scholar
  8. 8.
    Murata Manufacturing Co., Ltd. (ed) (2003) Fundamentals and applications of ceramic condensers. Ohmsha, Tokyo (6.7)Google Scholar
  9. 9.
    Iguchi Y, Saito T, Yamaoka N (1992) Ceramics 27(8):758–764 (6.8)Google Scholar
  10. 10.
    Saburi O (1959) J Am Ceram Soc 14(9):1159–1173 (6.11)Google Scholar
  11. 11.
    Saburi O (1961) J Am Ceram Soc 44(2):54–63 (6.11)CrossRefGoogle Scholar
  12. 12.
    Niimi H (2005) Monthly J Funct Mater 25(May issue):28–34 (6.11)Google Scholar
  13. 13.
    Kand A, Tashiro S, Igarashi H (1994) J Appl Phys 33:5431–5434 (6.11)Google Scholar
  14. 14.
    Aoto W, Takeda H, Nishida T, Okamura S, Iwasaki T, Shimada T, Terao K (1994) Proceedings of the annual meeting of the Ceramic Society of Japan 220 (6.11)Google Scholar
  15. 15.
    Sato M, Yoshida E, Sugawara E, Shimada H (1996) J Magn Soc Jpn 20:4214–4216 (6.12)Google Scholar
  16. 16.
    Yoshida E, Kondo K, Ono H (2006) Nikkei Electron. (Nikkei Business Publication, Inc.) 918:119–126 (6.12)Google Scholar
  17. 17.
    Yoshida S et al (2001) IEEE Trans Magn 37:2401–2403 (6.12)CrossRefGoogle Scholar
  18. 18.
    Abe M (2001) Sci Ind 75(8):342–344 (6.12)Google Scholar
  19. 19.
    Konno M, Sugawara S, Kudo S (1995–2011) Piezoelectric-type vibrating gyroscope angular velocity sensor. J Inst Electron Inform Commun Eng C-1, J78-C-1(11):547–556 (6.13)Google Scholar
  20. 20.
    Sugawara S, Tomikawa Y (1999–2007) Feature article on vibrating gyroscope – commercialization of ‘elastic wave devices’ accelerated. J Acoust Soc Jpn 55(7):496–503 (6.13)Google Scholar
  21. 21.
    Maeno T (2003) J Robotic Soc Jpn 21(1):10–14 (6.14)CrossRefGoogle Scholar
  22. 22.
    the Solid Actuator Research Group, the Japan Technology Transfer Association (ed) (1994) New actuator handbook for precision control of actuator. Fuji Techno System, Tokyo, pp 825–1008 (6.14)Google Scholar
  23. 23.
    Editorial Committee for Micromachine Technology List (2003) List of micromachine technologies. The Industrial Technology Service Center, pp 468–471 (6.14)Google Scholar
  24. 24.
    Kataoka K (2002) Electron Technol 44(4):14–18 (Nikkan Kogyo Shimbun, Ltd.) (6.14)Google Scholar
  25. 25.
    Maruyama H, Kojima N, Okumura I (2000) 2000 motor technology symposium. The Japan Management Association, pp B2-2-1–B2-2-8 (6.14)Google Scholar
  26. 26.
    Yoshino A, Otsuka K, Nakajima T, Koyama A, Nakajyo S (2000) J Chem Soc Jpn, Chem Ind Chem (Nippon Kagaku Kaishi) 8:523–553 (in Japanese) (6.16)Google Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.TokyoJapan

Personalised recommendations